"푸앵카레의 추측"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
79번째 줄: 79번째 줄:
  
 
* [[수학사연표 (역사)|수학사연표]]
 
* [[수학사연표 (역사)|수학사연표]]
 +
*  
  
 
 
 
 
86번째 줄: 87번째 줄:
 
<h5>메모</h5>
 
<h5>메모</h5>
  
* http://www.doctoryau.com/papers/yau_poincare.pdf
+
* [http://lecture.math.inha.ac.kr/%7Ejhyang/paper/EPerelman.pdf http://lecture.math.inha.ac.kr/~jhyang/paper/EPerelman.pdf]
 +
* [http://nepalimath.com/poincare.aspx ]http://nepalimath.com/poincare.aspx
 +
* http://comet.lehman.cuny.edu/sormani/others/perelman/introperelman.html
  
[http://lecture.math.inha.ac.kr/%7Ejhyang/paper/EPerelman.pdf http://lecture.math.inha.ac.kr/~jhyang/paper/EPerelman.pdf]
+
 
 
 
*  
 
  
 
 
 
 
135번째 줄: 136번째 줄:
 
* Curtis T. McMullen, [http://dx.doi.org/10.1090/S0273-0979-2011-01329-5%20 The evolution of geometric structures on 3-manifolds] Bull. Amer. Math. Soc. 48 (2011), 259-274.
 
* Curtis T. McMullen, [http://dx.doi.org/10.1090/S0273-0979-2011-01329-5%20 The evolution of geometric structures on 3-manifolds] Bull. Amer. Math. Soc. 48 (2011), 259-274.
 
*  Tao, Terence. 2006. “Perelman’s proof of the Poincar’e conjecture: a nonlinear PDE perspective”. <em>math/0610903</em> (10월 29). http://arxiv.org/abs/math/0610903.<br>
 
*  Tao, Terence. 2006. “Perelman’s proof of the Poincar’e conjecture: a nonlinear PDE perspective”. <em>math/0610903</em> (10월 29). http://arxiv.org/abs/math/0610903.<br>
*  
+
* Shing-Tung Yau, [http://www.doctoryau.com/papers/yau_poincare.pdf Structure of Three-Manifolds– Poincar´e and geometrization conjectures] 2006
* Shing-Tung Yau1[http://www.doctoryau.com/papers/yau_poincare.pdf Structure of Three-Manifolds– Poincar´e and geometrization conjectures]
+
 
* Shing-Tung Yau1
+
 
  
 
 
 
 

2011년 9월 22일 (목) 09:28 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 푸앵카레의 추측
    단일연결된 컴팩트 3차원 다양체는 3차원 구와 위상적으로 같다

 

 

단일연결된 공간
  • 단일연결된 공간(simply connected space)
    • 공간에 놓인 모든 닫힌 곡선을 연속적으로 변화시켜 점으로 만들 수 있는 경우, 그 공간은 단일연결되었다고 함.
  • 2차원 구면은 단일연결되어있음.
  • 도넛은 단일연결되어있지 않음.

 

2차원 구면의 단일연결성
  • 구면에 놓인 닫힌 곡선을 연속적으로 변화시켜 점으로 만들 수 있음

[/pages/4603403/attachments/2617503 800px-P1S2all.jpg]

 

 

도넛의 단일연결성
  • 도넛의 경우, 닫힌 곡선을 점으로 변화시킬 수 없는 경우가 존재하므로 단일연결되어 있지 않다

[/pages/4603403/attachments/2617511 180px-Torus_cycles.png]

 

 

다양체(manifold)
  • 1차원 다양체 = 곡선
    • 원, 직선, ...
  • 2차원 다양체 = 곡면
    • 평면, 구면, 도넛, 
  • n-차원 다양체 : 곡선과 곡면의 n차원 일반화
    • 국소적으로 n-차원 유클리드 공간과 같은 공간을 n-차원 다양체라 한다

 

 

위상적으로 같음
  • homeomorphic, homeomorphism
  • 도넛과 커피잔의 관계처럼 연속적인 변화를 통해 두 위상적 공간을 같도록 만들 수 있다면, 위상적으로 같다고 말한다

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서

 

 

 

관련기사

 

 

블로그