"함수값의 계산"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (판 4개)
35번째 줄: 35번째 줄:
 
* [[르장드르 카이 함수]]
 
* [[르장드르 카이 함수]]
 
* [[제1종타원적분 K (complete elliptic integral of the first kind)|일종타원적분 K (complete elliptic integral of the first kind)]]
 
* [[제1종타원적분 K (complete elliptic integral of the first kind)|일종타원적분 K (complete elliptic integral of the first kind)]]
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5>
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
 
 
* [[수학사연표 (역사)|수학사연표]]
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 다른 주제들</h5>
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=cosine
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
 
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 

2012년 10월 27일 (토) 13:39 판

\(\cos \frac{2\pi}{17}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{16}\)

  • \(\cos {\frac{2\pi}{3}} = -\frac{1}{2}\)
  • \(\cos {\frac{2\pi}{5}} = \frac{-1+\sqrt{5}}{4}\)
  • \(16\cos{2\pi\over17} = -1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ 2\sqrt{17+3\sqrt{17}-\sqrt{34-2\sqrt{17}}-2\sqrt{34+2\sqrt{17}}} \)
  • j-invariant
    \( j(\sqrt{-1})=1728\)
    \(j(\frac {-1+\sqrt{-3}}{2})=0\)
    \(j(\frac {-1+\sqrt{-43}} {2})=-884736744\)
    \(j(\frac {-1+\sqrt{-67}} {2})=147197952744\)
    \( j(\frac {-1+\sqrt{-163}} {2})=-262537412640768744\)
  • 정수에서의 리만제타함수의 값
    \(\zeta(2n) =(-1)^{n+1}\frac{B_{2n}(2\pi)^{2n}}{2(2n)!}, n \ge 1\)여기서 \(B_{2n}\)은 베르누이수
    \(\zeta(-n)=-\frac{B_{n+1}}{n+1}, n \ge 1\)
    \(\zeta(0)=-\frac{1}{2}\)
  • 디리클레 베타함수
    \(\beta(0)= \frac{1}{2}, \beta(1)\;=\;\tan^{-1}(1)\;=\;\frac{\pi}{4}, \beta(3)\;=\;\frac{\pi^3}{32}, \beta(5)\;=\;\frac{5\pi^5}{1536}, \beta(7)\;=\;\frac{61\pi^7}{184320}\)
  • 감마함수
    \(\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}\)
  • Digamma 함수
    \(\psi(1) = -\gamma\,\!\)
    \(\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma\)
    \(\psi\left(\frac{1}{3}\right) = -\frac{\pi}{2\sqrt{3}} -\frac{3}{2}\ln{3} - \gamma\)
    \(\psi\left(\frac{1}{4}\right) = -\frac{\pi}{2} - 3\ln{2} - \gamma\)
    \(\psi\left(\frac{1}{6}\right) = -\frac{\pi}{2}\sqrt{3} -2\ln{2} -\frac{3}{2}\ln(3) - \gamma\)
    \(\psi\left(\frac{1}{8}\right) = -\frac{\pi}{2} - 4\ln{2} - \frac{1}{\sqrt{2}} \left\{\pi + \ln(2 + \sqrt{2}) - \ln(2 - \sqrt{2})\right\} - \gamma\)
  • Dilogarithm

\(\mbox{Li}_{2}(0)=0\)

\(\mbox{Li}_{2}(1)=\frac{\pi^2}{6}\)

\(\mbox{Li}_{2}(-1)=-\frac{\pi^2}{12}\)

\(\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)\)

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)