"슈르 다항식(Schur polynomial)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
51번째 줄: 51번째 줄:
 
* [[영 태블로(Young tableau)]]를 이용한 슈르 다항식의 표현
 
* [[영 태블로(Young tableau)]]를 이용한 슈르 다항식의 표현
 
:<math>s_\lambda(x_1,\ldots,x_n) = \sum_T w(T)</math>
 
:<math>s_\lambda(x_1,\ldots,x_n) = \sum_T w(T)</math>
여기서 T는 λ 형태의 준표준 영 태블로
+
여기서 $T$는 $\lambda$ 형태의 준표준 영 태블로
 
* 예 $n=3$, $\lambda=(2,1,1)$의 경우, $s_{\lambda}(x_1,x_2,x_3)=x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1 x_2 x_3^2$
 
* 예 $n=3$, $\lambda=(2,1,1)$의 경우, $s_{\lambda}(x_1,x_2,x_3)=x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1 x_2 x_3^2$
 +
$$
 
\begin{array}{cc}
 
\begin{array}{cc}
 
  \boxed{1} & \boxed{1} \\
 
  \boxed{1} & \boxed{1} \\
 
  \boxed{2} & {} \\
 
  \boxed{2} & {} \\
 
  \boxed{3} & {} \\
 
  \boxed{3} & {} \\
\end{array}
+
\end{array},\,
 
 
 
\begin{array}{cc}
 
\begin{array}{cc}
 
  \boxed{1} & \boxed{2} \\
 
  \boxed{1} & \boxed{2} \\
 
  \boxed{2} & {} \\
 
  \boxed{2} & {} \\
 
  \boxed{3} & {} \\
 
  \boxed{3} & {} \\
\end{array}
+
\end{array},\,
 
 
 
 
 
\begin{array}{cc}
 
\begin{array}{cc}
 
  \boxed{1} & \boxed{3} \\
 
  \boxed{1} & \boxed{3} \\
 
  \boxed{2} & {} \\
 
  \boxed{2} & {} \\
 
  \boxed{3} & {} \\
 
  \boxed{3} & {} \\
\end{array}
+
\end{array}\,
 +
$$
 
* [[코스트카 수 (Kostka number)]]
 
* [[코스트카 수 (Kostka number)]]
 
  
 
==The first Giambelli formula (Jacobi-Trudy 항등식)==
 
==The first Giambelli formula (Jacobi-Trudy 항등식)==

2014년 9월 22일 (월) 16:16 판

개요


정의

  • 변수의 개수 $n$과 $d$의 (0을 허용하며, 크기가 $n$인) 분할(partition) \(\lambda\)가 주어지면 $d$차 다항식 \( s_\lambda(x_1,\ldots,x_n)\) 이 결정된다
    • 분할 $\lambda$의 크기가 $n$보다 큰 경우, $s_{\lambda}=0$
  • 다음과 같은 두 개의 분할을 생각하자
    • \(\rho : n-1,n-2,\cdots, 0\)
    • d의 (크기가 n인) 분할 \[\lambda: \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n\geq 0\]
  • 다음과 같이 $n\times n$ 행렬의 행렬식으로 두 다항식을 정의하자

\[a_{\lambda+\rho}=\operatorname{det}(x_{i}^{\lambda_{j}+n-j})_{1\le i,j\le n}\] \[a_{\rho}=\operatorname{det}(x_{i}^{n-j})_{1\le i,j\le n}\label{van}\]

 

변수의 개수가 2이고, 4의 분할인 경우

\begin{array}{c|c} \lambda & s_{\lambda } \\ \hline \{4\} & x_1^4+x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_2^4 \\ \{3,1\} & x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3 \\ \{2,2\} & x_1^2 x_2^2 \\ \{2,1,1\} & 0 \\ \{1,1,1,1\} & 0 \end{array}

변수의 개수가 3이고, 4의 분할인 경우

\begin{array}{c|c} \lambda & s_{\lambda } \\ \hline \{4\} & x_1^4+x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_2^4+x_1^3 x_3+x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_2^3 x_3+x_1^2 x_3^2+x_1 x_2 x_3^2+x_2^2 x_3^2+x_1 x_3^3+x_2 x_3^3+x_3^4 \\ \{3,1\} & x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_1^3 x_3+2 x_1^2 x_2 x_3+2 x_1 x_2^2 x_3+x_2^3 x_3+x_1^2 x_3^2+2 x_1 x_2 x_3^2+x_2^2 x_3^2+x_1 x_3^3+x_2 x_3^3 \\ \{2,2\} & x_1^2 x_2^2+x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1^2 x_3^2+x_1 x_2 x_3^2+x_2^2 x_3^2 \\ \{2,1,1\} & x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1 x_2 x_3^2 \\ \{1,1,1,1\} & 0 \end{array}  

 

 

영 태블로

\[s_\lambda(x_1,\ldots,x_n) = \sum_T w(T)\] 여기서 $T$는 $\lambda$ 형태의 준표준 영 태블로

  • 예 $n=3$, $\lambda=(2,1,1)$의 경우, $s_{\lambda}(x_1,x_2,x_3)=x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_1 x_2 x_3^2$

$$ \begin{array}{cc} \boxed{1} & \boxed{1} \\ \boxed{2} & {} \\ \boxed{3} & {} \\ \end{array},\, \begin{array}{cc} \boxed{1} & \boxed{2} \\ \boxed{2} & {} \\ \boxed{3} & {} \\ \end{array},\, \begin{array}{cc} \boxed{1} & \boxed{3} \\ \boxed{2} & {} \\ \boxed{3} & {} \\ \end{array}\, $$

The first Giambelli formula (Jacobi-Trudy 항등식)

정리 (자코비-트루디)

\(s_{\lambda} = \operatorname{det}(h_{\lambda_{i}-i+j})\)

  • 변수가 3인 경우의 complete homogeneous polynomial은 다음과 같다

\[\left( \begin{array}{cc} h_1 & x_1+x_2+x_3 \\ h_2 & x_1^2+x_1 x_2+x_2^2+x_1 x_3+x_2 x_3+x_3^2 \\ h_3 & x_1^3+x_1^2 x_2+x_1 x_2^2+x_2^3+x_1^2 x_3+x_1 x_2 x_3+x_2^2 x_3+x_1 x_3^2+x_2 x_3^2+x_3^3 \\ h_4 & x_1^4+x_1^3 x_2+x_1^2 x_2^2+x_1 x_2^3+x_2^4+x_1^3 x_3+x_1^2 x_2 x_3+x_1 x_2^2 x_3+x_2^3 x_3+x_1^2 x_3^2+x_1 x_2 x_3^2+x_2^2 x_3^2+x_1 x_3^3+x_2 x_3^3+x_3^4 \end{array} \right)\]

  • 예 \[s_{(2,1,1)}(x_1,x_2,x_3)=\left( \begin{array}{ccc} h_2 & h_3 & h_4 \\ 1 & h_1 & h_2 \\ 0 & 1 & h_1 \\ \end{array} \right)=h_1^2 h_2-h_2^2-h_1 h_3+h_4\]

 

코쉬 항등식

역사

 

 

메모


 

관련된 항목들

 

매스매티카 파일 및 계산 리소스


 

수학용어번역

  • 표준, standard - 대한수학회 수학용어집
  • 준,반, semi - 대한수학회 수학용어집

 

 

 

사전 형태의 자료


 

리뷰논문, 에세이, 강의노트


관련논문

  • Proctor, Robert A. 1989. “Equivalence of the Combinatorial and the Classical Definitions of Schur Functions.” Journal of Combinatorial Theory, Series A 51 (1) (May): 135–137. doi:10.1016/0097-3165(89)90086-1.
  • I. Gessel and X. Viennot, Determinants, paths, and plane partitions, Preprint, 1988 http://people.brandeis.edu/~gessel/homepage/papers/pp.pdf