"포드 원 (Ford Circles)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
42번째 줄: 42번째 줄:
 
==관찰의 증명==
 
==관찰의 증명==
  
# 서로 겹치는 두 포드 원은 없음.
+
;정리
 +
두 포드 원은 만나지 않거나, 접한다.
  
Proof.
+
;증명
  
 
아래에 서로 다른 두 개의 포드 원을 그렸다. 원 A 는 중심의 <math>x</math> 좌표가 <math>p/q</math> 인 원이고, 원 B 는 중심의 <math>x</math> 좌표가 <math>P/Q</math> 인 원이다. (<math>p,q, P, Q</math> 는 자연수, <math>gcd(p,q) = gcd(P, Q) = 1</math>)
 
아래에 서로 다른 두 개의 포드 원을 그렸다. 원 A 는 중심의 <math>x</math> 좌표가 <math>p/q</math> 인 원이고, 원 B 는 중심의 <math>x</math> 좌표가 <math>P/Q</math> 인 원이다. (<math>p,q, P, Q</math> 는 자연수, <math>gcd(p,q) = gcd(P, Q) = 1</math>)
51번째 줄: 52번째 줄:
  
 
   
 
   
 
 
위 그림에서, 점 <math>A</math> 에서 선분 <math>\overline{BG}</math> 위에 내린 발을 <math>C</math> 라 하자. 그러면 삼각형 <math>\triangle ACB</math> 는 직각삼각형이 된다. 피타고라스의 정리를 적용하면,
 
위 그림에서, 점 <math>A</math> 에서 선분 <math>\overline{BG}</math> 위에 내린 발을 <math>C</math> 라 하자. 그러면 삼각형 <math>\triangle ACB</math> 는 직각삼각형이 된다. 피타고라스의 정리를 적용하면,
  
<math>\overline{AB}^2 = \overline{BC}^2 + \overline{CA}^2</math> 이다. 포드 원의 정의에서 <math>A(\frac{p}{q}, \frac{1}{2q^2}), B(\frac{P}{Q}, \frac{1}{2Q^2}), C(\frac{P}{Q},\frac{1}{2q^2} )</math> 이므로, 각 변의 길이를 구해서 정리하면 <math>\overline{AB}^2 = (\overline{AD} + \overline{EB})^2 + \frac{(Pq - pQ)^2 - 1}{Q^2 q^2}</math> 를 얻는다. (http://www.wolframalpha.com/input/?i=%28P%2FQ+-+p%2Fq%29%5E2+%2B+%281%2F%282+Q%5E2%29+-+1%2F%282+q%5E2%29%29%5E2+-+%281%2F%282+q%5E2%29+%2B+1%2F%282+Q%5E2%29%29%5E2+%2F%2F+FullSimplify )
+
<math>\overline{AB}^2 = \overline{BC}^2 + \overline{CA}^2</math> 이다. 포드 원의 정의에서 <math>A(\frac{p}{q}, \frac{1}{2q^2}), B(\frac{P}{Q}, \frac{1}{2Q^2}), C(\frac{P}{Q},\frac{1}{2q^2} )</math> 이므로, 다음이 성립한다
 +
$$
 +
\overline{AB}^2 = (\overline{AD} + \overline{EB})^2 + \frac{(Pq - pQ)^2 - 1}{Q^2 q^2}
 +
$$
  
 
여기서,
 
여기서,
60번째 줄: 63번째 줄:
 
i.  <math>|Pq -pQ|> 1</math> 이면, <math>\overline{AB} > \overline{AD} + \overline{EB}</math> 이므로, 두 원은 서로 떨어져 있다.
 
i.  <math>|Pq -pQ|> 1</math> 이면, <math>\overline{AB} > \overline{AD} + \overline{EB}</math> 이므로, 두 원은 서로 떨어져 있다.
  
ii.  <math>|Pq -pQ|= 1</math> 이면, <math>\overline{AB} = \overline{AD} + \overline{EB}</math> 이므로, 두 원은 접한다. (10-나 과정의 '두 원의 위치 관계' 참조)
+
ii.  <math>|Pq -pQ|= 1</math> 이면, <math>\overline{AB} = \overline{AD} + \overline{EB}</math> 이므로, 두 원은 접한다.
  
 
iii. <math>|Pq -pQ| <1</math> 일 수는 없다.
 
iii. <math>|Pq -pQ| <1</math> 일 수는 없다.
66번째 줄: 69번째 줄:
 
왜냐하면, <math>p,q, P, Q</math> 는 자연수이므로 <math>Pq -pQ = 0</math> 이면, <math>p/q \ne P/Q</math> 에 모순이기 때문이다.
 
왜냐하면, <math>p,q, P, Q</math> 는 자연수이므로 <math>Pq -pQ = 0</math> 이면, <math>p/q \ne P/Q</math> 에 모순이기 때문이다.
  
위 세 가지 경우에서, 서로 겹쳐 있는 두 포드 원은 없음을 알 수 있다.
+
위 세 가지 경우에서, 서로 겹쳐 있는 두 포드 원은 없음을 알 수 있다.
 
 
 
 
 
2. 접하는 두 포드 원 사이의 관계
 
  
<math>x</math> 좌표가 <math>p/q</math> 인 포드 원을 <math>C[p/q]</math> 라고 쓰자.
 
  
접하는 두 포드 원 <math>C[b/a]</math> 과 <math>C[d/c]</math> 가 있으면, <math>|ad - bc| = 1</math> 이다.
+
;정리
 +
<math>x</math> 좌표가 <math>p/q</math> 인 포드 원을 <math>C[p/q]</math> 라고 쓰자. 두 포드 원 <math>C[b/a]</math> 과 <math>C[d/c]</math>이 접하면, <math>|ad - bc| = 1</math> 이 성립한다.
  
Proof.
+
;증명
  
관찰 1 의 증명 중 ii) 로부터 알 수 있다.
+
관찰 1 의 증명 중 ii) 로부터 알 수 있다.
  
 
3. Farey Series 와의 관계
 
3. Farey Series 와의 관계

2015년 11월 27일 (금) 20:19 판



개요

포드 원 (Ford Circles)1.gif

  • \(p,q\)가 서로 소인 자연수일 때, 중심이 \((\frac{p}{q},\frac{1}{2q^2})\) 이고, 반지름이 \(\frac{1}{2q^2}\)인 원을 포드 원이라 함
    • \(y=0\)에 접함

포드 원 (Ford Circles)2.gif



관찰

위 그림을 잘 보면서 관찰해 보자. (원 안에 적혀 있는 숫자는, 원 중심의 \(x\) 좌표이다.)


  • \(p,q\)가 서로소인 자연수들이니까, 원 중심의 \(x\) 좌표들은 기약분수들이 되겠다.
  • 서로 겹치는 두 Ford circle 은 없는 듯 하다.
  • 접하는 두 포드 원 사이에는 어떤 관계가 있을까?
    • \(\frac35 , \frac23\) \(\frac35 , \frac58\) \(\frac58, \frac23\) \(\frac58, \frac{7}{11}\) ...
    • \(10-9 = 25-24 = 16 - 15 = 56 - 55 = \cdots = 1\)
  • 서로 접하는 세 포드 원 사이에는?
    • \(\frac35, \frac58 , \frac23\) \(\frac35, \frac{8}{13} , \frac58\) \(\frac58, \frac{7}{11} , \frac23\) \(\frac47, \frac{7}{12} , \frac35\)
    • 뭔가 발견했는가?

이제 Farey series 를 읽고 다시 돌아오자. (오른쪽 클릭 - 새 탭 열기/새 창 열기)

  • 서로 접하는 세 원의 중심의 \(x\) 좌표를 보자. 저 세 수를 가지는 (가장 작은) Farey Series 를 찾을 수 있겠는가? 그 때, 그 세 수는 어떻게 배열되어 있는가?



관찰의 증명

정리

두 포드 원은 만나지 않거나, 접한다.

증명

아래에 서로 다른 두 개의 포드 원을 그렸다. 원 A 는 중심의 \(x\) 좌표가 \(p/q\) 인 원이고, 원 B 는 중심의 \(x\) 좌표가 \(P/Q\) 인 원이다. (\(p,q, P, Q\) 는 자연수, \(gcd(p,q) = gcd(P, Q) = 1\))

포드 원 (Ford Circles)3.gif


위 그림에서, 점 \(A\) 에서 선분 \(\overline{BG}\) 위에 내린 발을 \(C\) 라 하자. 그러면 삼각형 \(\triangle ACB\) 는 직각삼각형이 된다. 피타고라스의 정리를 적용하면,

\(\overline{AB}^2 = \overline{BC}^2 + \overline{CA}^2\) 이다. 포드 원의 정의에서 \(A(\frac{p}{q}, \frac{1}{2q^2}), B(\frac{P}{Q}, \frac{1}{2Q^2}), C(\frac{P}{Q},\frac{1}{2q^2} )\) 이므로, 다음이 성립한다 $$ \overline{AB}^2 = (\overline{AD} + \overline{EB})^2 + \frac{(Pq - pQ)^2 - 1}{Q^2 q^2} $$

여기서,

i. \(|Pq -pQ|> 1\) 이면, \(\overline{AB} > \overline{AD} + \overline{EB}\) 이므로, 두 원은 서로 떨어져 있다.

ii. \(|Pq -pQ|= 1\) 이면, \(\overline{AB} = \overline{AD} + \overline{EB}\) 이므로, 두 원은 접한다.

iii. \(|Pq -pQ| <1\) 일 수는 없다.

왜냐하면, \(p,q, P, Q\) 는 자연수이므로 \(Pq -pQ = 0\) 이면, \(p/q \ne P/Q\) 에 모순이기 때문이다.

위 세 가지 경우에서, 서로 겹쳐 있는 두 포드 원은 없음을 알 수 있다. ■


정리

\(x\) 좌표가 \(p/q\) 인 포드 원을 \(C[p/q]\) 라고 쓰자. 두 포드 원 \(C[b/a]\) 과 \(C[d/c]\)이 접하면, \(|ad - bc| = 1\) 이 성립한다.

증명

관찰 1 의 증명 중 ii) 로부터 알 수 있다. ■

3. Farey Series 와의 관계

관련된 항목들



매스매티카 파일 및 계산 리소스

사전형태의 자료



리뷰, 에세이, 강의노트



관련논문

  • Athreya, Jayadev, Sneha Chaubey, Amita Malik, and Alexandru Zaharescu. “Geometry of Farey-Ford Polygons.” arXiv:1410.4908 [math], October 18, 2014. http://arxiv.org/abs/1410.4908.
  • Fractions L. R. Ford, The American Mathematical Monthly, Vol. 45, No. 9 (Nov., 1938), pp. 586-601