"앤드류스-고든 항등식(Andrews-Gordon identity)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
5번째 줄: 5번째 줄:
 
*  등각장론에서 c(2, 2k+1) minimal 모형에 의해 주어지는 표현의 캐릭터:<math>\chi_j(\tau)=q^{h_j-c/24}\prod_{n\neq 0,\pm(j+1)}(1-q^n)^{-1}</math>
 
*  등각장론에서 c(2, 2k+1) minimal 모형에 의해 주어지는 표현의 캐릭터:<math>\chi_j(\tau)=q^{h_j-c/24}\prod_{n\neq 0,\pm(j+1)}(1-q^n)^{-1}</math>
 
* [[베일리 사슬(Bailey chain)]],  [[베일리 격자(Bailey lattice)]] 의 방법으로 증명할 수 있다
 
* [[베일리 사슬(Bailey chain)]],  [[베일리 격자(Bailey lattice)]] 의 방법으로 증명할 수 있다
 
+
  
 
+
  
 
==항등식==
 
==항등식==
17번째 줄: 17번째 줄:
 
:<math>\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}</math>
 
:<math>\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}</math>
  
 
+
  
 
+
  
 
==k=2인 경우 : 로저스-라마누잔 항등식==
 
==k=2인 경우 : 로저스-라마누잔 항등식==
33번째 줄: 33번째 줄:
 
   =1+ q +q^2 +q^3 +2q^4+2q^5 +3q^6+\cdots</math>
 
   =1+ q +q^2 +q^3 +2q^4+2q^5 +3q^6+\cdots</math>
  
 
+
  
 
+
  
 
==k=3인 경우==
 
==k=3인 경우==
46번째 줄: 46번째 줄:
 
:<math>\sum_{n_1,n_{2}\geq0}\frac{q^{n_{1}^2+2n_1n_2+2n_{2}^{2}}}{(q)_{n_1}(q)_{n_{2}}}=\prod_{r\neq 0,\pm 3 \pmod {7}}\frac{1}{1-q^r}=\frac{(q^3;q^7)_\infty (q^4; q^7)_\infty(q^7;q^7)_\infty}{(q)_\infty}</math>
 
:<math>\sum_{n_1,n_{2}\geq0}\frac{q^{n_{1}^2+2n_1n_2+2n_{2}^{2}}}{(q)_{n_1}(q)_{n_{2}}}=\prod_{r\neq 0,\pm 3 \pmod {7}}\frac{1}{1-q^r}=\frac{(q^3;q^7)_\infty (q^4; q^7)_\infty(q^7;q^7)_\infty}{(q)_\infty}</math>
  
 
+
  
 
==k=4인 경우==
 
==k=4인 경우==
 
* k=4, i=3인 경우 [http://oeis.org/A000726 A000726]
 
* k=4, i=3인 경우 [http://oeis.org/A000726 A000726]
:<math>\frac{q^{n_1^2+2 n_2 n_1+2 n_3 n_1+2 n_2^2+3 n_3^2+4 n_2 n_3+n_3}}{(q)_{n_1} (q)_{n_2} (q)_{n_3}}=\prod_{r\neq 0,\pm 3 \pmod {9}}\frac{1}{1-q^r}=1+q+2 q^2+2 q^3+4 q^4+5 q^5+7 q^6+9 q^7+13 q^8+16 q^9+22 q^{10}+O(q^11)</math> 
+
:<math>\frac{q^{n_1^2+2 n_2 n_1+2 n_3 n_1+2 n_2^2+3 n_3^2+4 n_2 n_3+n_3}}{(q)_{n_1} (q)_{n_2} (q)_{n_3}}=\prod_{r\neq 0,\pm 3 \pmod {9}}\frac{1}{1-q^r}=1+q+2 q^2+2 q^3+4 q^4+5 q^5+7 q^6+9 q^7+13 q^8+16 q^9+22 q^{10}+O(q^11)</math>  
  
 
+
  
 
==얻어지는 이차형식==
 
==얻어지는 이차형식==
71번째 줄: 71번째 줄:
 
</math>
 
</math>
 
* 이는 [[양의 정부호 행렬(positive definite matrix)]]의 예이다
 
* 이는 [[양의 정부호 행렬(positive definite matrix)]]의 예이다
 
+
  
 
+
  
 
==역사==
 
==역사==
80번째 줄: 80번째 줄:
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=ramanujan+gordon+andrews
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=ramanujan+gordon+andrews
 
* [[수학사 연표]]
 
* [[수학사 연표]]
*  
+
*
  
 
+
  
 
+
  
 
==메모==
 
==메모==
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
98번째 줄: 98번째 줄:
 
* [[베일리 격자(Bailey lattice)]]
 
* [[베일리 격자(Bailey lattice)]]
 
* [[베일리 사슬(Bailey chain)]]
 
* [[베일리 사슬(Bailey chain)]]
 
+
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxUFkzQXUyeXNMTHc/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxUFkzQXUyeXNMTHc/edit
 
+
  
  
==사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
112번째 줄: 112번째 줄:
 
* http://mathworld.wolfram.com/Andrews-GordonIdentity.html
 
* http://mathworld.wolfram.com/Andrews-GordonIdentity.html
  
 
+
  
 
+
  
 
==관련논문==
 
==관련논문==

2020년 12월 28일 (월) 02:42 기준 최신판

개요



항등식

  • 자연수 \(k\geq 2\) , \(1\leq i \leq k\)에 대하여, 다음이 성립한다

\[\sum_{n_1,\cdots,n_{k-1}\geq0}\frac{q^{N_1^2+\cdots+N_{k-1}^2+N_i+\cdots+N_{k-1}}}{(q)_{n_1}...(q)_{n_{k-1}}}=\prod_{r\neq 0,\pm i \pmod {2k+1}}\frac{1}{1-q^r} \] 여기서 \(j\leq k-1\)이면 \(N_j=n_j+\cdots+n_{k-1}\) , \(j=k\)이면 \(N_j=0\)

  • 여러 문헌에서 다음과 같이 표현되기도 한다

\[\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}\]



k=2인 경우 : 로저스-라마누잔 항등식

\[H(q) =\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} = \frac {1}{(q^2;q^5)_\infty (q^3; q^5)_\infty} =1+q^2 +q^3 +q^4+q^5 +2q^6+\cdots\]

  • i=2인 경우

\[G(q) = \sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} = \frac {1}{(q;q^5)_\infty (q^4; q^5)_\infty} =1+ q +q^2 +q^3 +2q^4+2q^5 +3q^6+\cdots\]



k=3인 경우

  • i=1인 경우

\[\sum_{n_1,n_{2}\geq0}\frac{q^{n_{1}^2+2n_1n_2+2n_{2}^{2}+n_1+2n_2}}{(q)_{n_1}(q)_{n_{2}}}=\prod_{r\neq 0,\pm 1 \pmod {7}}\frac{1}{1-q^r}=\frac{(q;q^7)_\infty (q^6; q^7)_\infty(q^7;q^7)_\infty}{(q)_\infty}\]

  • i=2인 경우

\[\sum_{n_1,n_{2}\geq0}\frac{q^{n_{1}^2+2n_1n_2+2n_{2}^{2}+n_2}}{(q)_{n_1}(q)_{n_{2}}}=\prod_{r\neq 0,\pm 2 \pmod {7}}\frac{1}{1-q^r}=\frac{(q^2;q^7)_\infty (q^5; q^7)_\infty(q^7;q^7)_\infty}{(q)_\infty}\]

  • i=3인 경우

\[\sum_{n_1,n_{2}\geq0}\frac{q^{n_{1}^2+2n_1n_2+2n_{2}^{2}}}{(q)_{n_1}(q)_{n_{2}}}=\prod_{r\neq 0,\pm 3 \pmod {7}}\frac{1}{1-q^r}=\frac{(q^3;q^7)_\infty (q^4; q^7)_\infty(q^7;q^7)_\infty}{(q)_\infty}\]


k=4인 경우

\[\frac{q^{n_1^2+2 n_2 n_1+2 n_3 n_1+2 n_2^2+3 n_3^2+4 n_2 n_3+n_3}}{(q)_{n_1} (q)_{n_2} (q)_{n_3}}=\prod_{r\neq 0,\pm 3 \pmod {9}}\frac{1}{1-q^r}=1+q+2 q^2+2 q^3+4 q^4+5 q^5+7 q^6+9 q^7+13 q^8+16 q^9+22 q^{10}+O(q^11)\]


얻어지는 이차형식

  • \(k=2\), \(n_{1}^{2}\)
  • \(k=3\), \((n_{1}+n_{2})^{2}+n_{2}^{2}\)
  • \(k=4\), \((n_{1}+n_{2}+n_{3})^{2}+(n_{2}+n_{3})^{2}+n_{3}^{2}\)
  • \(k=5\), \((n_{1}+n_{2}+n_{3}+n_{4})^{2}+(n_{2}+n_{3}+n_{4})^{2}+(n_{3}+n_{4})^{2}+n_{4}^{2}\)
    • 이차형식에 대응되는 행렬은 다음과 같이 주어진다

\[ \left( \begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \\ \end{array} \right) \]



역사



메모

관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료



관련논문

  • Kazakov, Vladimir, Sebastien Leurent, and Dmytro Volin. “T-System on T-Hook: Grassmannian Solution and Twisted Quantum Spectral Curve.” arXiv:1510.02100 [hep-Th, Physics:math-Ph], October 7, 2015. http://arxiv.org/abs/1510.02100.
  • Larson, Hannah. “Generalized Andrews-Gordon Identities.” arXiv:1506.05063 [math], June 16, 2015. http://arxiv.org/abs/1506.05063.
  • Capparelli, S., J. Lepowsky, and A. Milas. 2006. “The Rogers-Selberg Recursions, the Gordon-Andrews Identities and Intertwining Operators.” The Ramanujan Journal. An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan 12 (3): 379–397. doi:10.1007/s11139-006-0150-7.
  • Richmond, Bruce, and George Szekeres. 1981. “Some Formulas Related to Dilogarithms, the Zeta Function and the Andrews-Gordon Identities.” Australian Mathematical Society. Journal. Series A 31 (3): 362–373. http://dx.doi.org/10.1017/S1446788700019492
  • Andrews, George E. 1974. “A General Theory of Identities of the Rogers-Ramanujan Type.” Bulletin of the American Mathematical Society 80: 1033–1052. http://projecteuclid.org/euclid.bams/1183536000
  • Andrews, George E. 1974. On the General Rogers-Ramanujan Theorem. Providence, R.I.: American Mathematical Society. http://www.math.psu.edu/andrews/pdf/58.pdf
    • Andrews, G. E. Providence, RI: Amer. Math. Soc., 1974.
  • G. Andrews, An analytic generalization of the Rogers–Ramanujan identities for odd moduli, Proc. Natl. Acad. Sci. USA 71 (1974), 4082–4085. http://www.pnas.org/content/71/10/4082.short
  • Gordon, Basil. 1961. “A Combinatorial Generalization of the Rogers-Ramanujan Identities.” American Journal of Mathematics 83: 393–399. http://www.jstor.org/stable/2372962