"드 무아브르의 정리, 복소수와 정다각형"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 드 무아브르의 정리 복소수와 정다각형로 바꾸었습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
<h5>간단한 소개</h5> | <h5>간단한 소개</h5> | ||
− | + | <math>(\cos \theta + i \sin \theta)^n=\cos n\theta + i \sin n\theta</math> | |
− | |||
− | |||
− | + | <h5>정다각형과의 관계</h5> | |
− | + | * <math>z^n=1</math> 를 만족시키는 복소수 방정식을 풀면, n개의 해는 복소평면에서 정n각형의 꼭지점이 된다. | |
− | + | * <math>z^3=1</math> 의 해는, <math>1,\frac{-1+\sqrt{-3}}{2}, \frac{-1-\sqrt{-3}}{2}</math> 세 개가 있다. 이를 복소평면에 점으로 나타내면, 다음과 같이 정삼각형의 꼭지점을 이룬다.<br>[/pages/3002568/attachments/1344206 img602.gif]<br> | |
− | |||
− | |||
− | |||
35번째 줄: | 30번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
47번째 줄: | 36번째 줄: | ||
* 네이버 지식인<br> | * 네이버 지식인<br> | ||
− | ** http://kin.search.naver.com/search.naver?where=kin_qna&query= | + | ** [http://kin.search.naver.com/search.naver?where=kin_qna&query=%EB%93%9C%EB%AC%B4%EC%95%84%EB%B8%8C%EB%A5%B4 http://kin.search.naver.com/search.naver?where=kin_qna&query=드무아브르] |
53번째 줄: | 42번째 줄: | ||
<h5>관련된 고교수학 또는 대학수학</h5> | <h5>관련된 고교수학 또는 대학수학</h5> | ||
− | + | * 삼각함수 | |
+ | * [[복소수]] | ||
+ | * [[추상대수학]] | ||
+ | * [[추상대수학의 토픽들]] | ||
+ | * [[복소함수론]] | ||
59번째 줄: | 52번째 줄: | ||
<h5>관련된 다른 주제들</h5> | <h5>관련된 다른 주제들</h5> | ||
− | + | * [[가우스와 정17각형의 작도]] | |
+ | * [[수학사연표 (역사)|수학사연표]] | ||
+ | * [[오일러의 공식 e^{iπ}+1=0|오일러의 공식]] | ||
65번째 줄: | 60번째 줄: | ||
<h5>관련도서 및 추천도서</h5> | <h5>관련도서 및 추천도서</h5> | ||
− | + | * 도서내검색<br> | |
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/contentSearch.do?query= | ||
+ | * 도서검색<br> | ||
+ | ** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords= | ||
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
71번째 줄: | 71번째 줄: | ||
<h5>참고할만한 자료</h5> | <h5>참고할만한 자료</h5> | ||
− | * http://ko.wikipedia.org/wiki/ | + | * [http://ko.wikipedia.org/wiki/%EB%B3%B5%EC%86%8C%EC%88%98 http://ko.wikipedia.org/wiki/복소수] |
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://viswiki.com/en/ | ||
+ | * http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q= | ||
+ | * http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7= | ||
* 다음백과사전 http://enc.daum.net/dic100/search.do?q= | * 다음백과사전 http://enc.daum.net/dic100/search.do?q= | ||
+ | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집] | ||
+ | |||
+ | |||
+ | |||
+ | <h5>관련기사</h5> | ||
+ | |||
+ | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
+ | ** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EB%B3%B5%EC%86%8C%EC%88%98 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=복소수] | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= <br> | ||
+ | |||
+ | |||
− | <h5> | + | <h5>블로그</h5> |
− | * http://www. | + | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= |
+ | * 트렌비 블로그 검색 http://www.trenb.com/search.qst?q= | ||
− | <h5> | + | <h5>이미지 검색</h5> |
+ | |||
+ | * http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search= | ||
+ | * http://images.google.com/images?q= | ||
+ | * [http://www.artchive.com/ http://www.artchive.com] | ||
+ | |||
+ | |||
− | + | <h5>동영상</h5> | |
− | * | + | * http://www.youtube.com/results?search_type=&search_query= |
− |
2009년 5월 8일 (금) 05:40 판
간단한 소개
\((\cos \theta + i \sin \theta)^n=\cos n\theta + i \sin n\theta\)
정다각형과의 관계
- \(z^n=1\) 를 만족시키는 복소수 방정식을 풀면, n개의 해는 복소평면에서 정n각형의 꼭지점이 된다.
- \(z^3=1\) 의 해는, \(1,\frac{-1+\sqrt{-3}}{2}, \frac{-1-\sqrt{-3}}{2}\) 세 개가 있다. 이를 복소평면에 점으로 나타내면, 다음과 같이 정삼각형의 꼭지점을 이룬다.
[/pages/3002568/attachments/1344206 img602.gif]
하위페이지
재미있는 사실
많이 나오는 질문
관련된 고교수학 또는 대학수학
- 삼각함수
- 복소수
- 추상대수학
- 추상대수학의 토픽들
- 복소함수론
관련된 다른 주제들
- 가우스와 정17각형의 작도
- 수학사연표
- [[오일러의 공식 e^{iπ}+1=0|오일러의 공식]]
관련도서 및 추천도서
- 도서내검색
- 도서검색
참고할만한 자료
- http://ko.wikipedia.org/wiki/복소수
- http://en.wikipedia.org/wiki/
- http://viswiki.com/en/
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
- 대한수학회 수학 학술 용어집
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=복소수
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com