"로그 사인 적분 (log sine integrals)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
42번째 줄: 42번째 줄:
 
 <math>I(x)=\int_{0}^{\pi}e^{x\log(2\sin \frac{1}{2}\theta)}d\theta =\int_{0}^{\pi}(2\sin \frac{1}{2}\theta)^{x}\,d\theta=2^{x+1}\int_{0}^{\pi/2}\sin^{x}t\,dt=\sqrt{\pi}\frac{2^x\Gamma(\frac{x}{2}+\frac{1}{2})}{\Gamma(\frac{x}{2}+1)}</math>
 
 <math>I(x)=\int_{0}^{\pi}e^{x\log(2\sin \frac{1}{2}\theta)}d\theta =\int_{0}^{\pi}(2\sin \frac{1}{2}\theta)^{x}\,d\theta=2^{x+1}\int_{0}^{\pi/2}\sin^{x}t\,dt=\sqrt{\pi}\frac{2^x\Gamma(\frac{x}{2}+\frac{1}{2})}{\Gamma(\frac{x}{2}+1)}</math>
  
[[감마함수]]
+
여기서 [[감마함수]]의 곱셈공식 <math>2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)</math> 을 이용하면, 우변을 정리하여 원하는 식을 얻는다. 
 +
 
 +
 <math>I(x)=\int_{0}^{\pi}e^{x\log(2\sin \frac{1}{2}\theta)}d\theta =\int_{0}^{\pi}(2\sin \frac{1}{2}\theta)^{x}\,d\theta=2^{x+1}\int_{0}^{\pi/2}\sin^{x}t\,dt=\sqrt{\pi}\frac{2^x\Gamma(\frac{x}{2}+\frac{1}{2})}{\Gamma(\frac{x}{2}+1)}</math>
 +
 
 +
 
  
 
 
 
 

2010년 6월 16일 (수) 08:33 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 정의
    \(\operatorname{Ls}_{a+b,a}(\theta)=-\int_{0}^{\theta}x^a\log^{b-1}}|2\sin \frac{x}{2}|\,dx\)
    \(\operatorname{Ls}_{n}(\theta)=-\int_{0}^{\theta}\log^{n-1}}(2\sin \frac{x}{2})\,dx\)
  • 클라우센 함수의 일반화로 볼 수 있다
    \(\operatorname{Cl}_2(\theta)=-\int_0^{\theta} \ln |2\sin \frac{t}{2}| \,dt=\sum_{n=1}^{\infty}\frac{\sin (n\theta)}{n^2}\)

 

 

\(\int_{0}^{1-e^{i\theta}}\log^{n-1}z\frac{dz}{1-z}=-i\int_{0}^{\theta}(\frac{i}{2}(x-\pi)+\log|2\sin \frac{x}{2}|)^{n-1}\,dx \)\(=-\int_{0}^{\theta}x^a\log^{b-1}}|2\sin \frac{x}{2}|\,dx\)

 

 

special values의 생성함수
  • 정의
    \(\operatorname{Ls}_{n}(\pi)=-\int_{0}^{\pi}\log^{n-1}}(2\sin \frac{x}{2})\,dx\)
  • 생성함수
    \(I(x)=\int_{0}^{\pi}e^{x\log(2\sin \frac{1}{2}\theta)}d\theta =\sum_{n=0}^{\infty}\int_{0}^{\pi}\frac{x^n}{n!}\log^n(2\sin\frac{1}{2}\theta)d\theta=-\sum_{n=0}^{\infty}\frac{x^n}{n!}\operatorname{Ls}_{n+1}(\pi)\)

(정리)

\(I(x)=\frac{\pi\Gamma(1+x)}{(\Gamma(1+\frac{1}{2}x))^2}\)

 

(증명)

오일러 베타적분 의 결과를 이용하자. 

\(\int_0^{\frac{\pi}{2}}\sin^{p}\theta{d\theta}= \frac{1}{2}B(\frac{p+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{p}{2}+\frac{1}{2})}{2\Gamma(\frac{p}{2}+1)}\)

 \(I(x)=\int_{0}^{\pi}e^{x\log(2\sin \frac{1}{2}\theta)}d\theta =\int_{0}^{\pi}(2\sin \frac{1}{2}\theta)^{x}\,d\theta=2^{x+1}\int_{0}^{\pi/2}\sin^{x}t\,dt=\sqrt{\pi}\frac{2^x\Gamma(\frac{x}{2}+\frac{1}{2})}{\Gamma(\frac{x}{2}+1)}\)

여기서 감마함수의 곱셈공식 \(2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)\) 을 이용하면, 우변을 정리하여 원하는 식을 얻는다. 

 \(I(x)=\int_{0}^{\pi}e^{x\log(2\sin \frac{1}{2}\theta)}d\theta =\int_{0}^{\pi}(2\sin \frac{1}{2}\theta)^{x}\,d\theta=2^{x+1}\int_{0}^{\pi/2}\sin^{x}t\,dt=\sqrt{\pi}\frac{2^x\Gamma(\frac{x}{2}+\frac{1}{2})}{\Gamma(\frac{x}{2}+1)}\)

 

 

 

점화식

\(\operatorname{Ls}_{m+2}(\pi)=(-1)^{m}m![\pi(1-2^{-m})\zeta(m+1)-\sum_{k=2}^{m-1}(-1)^{k}\frac{1-2^{k-m}}{k!}\zeta(m-k+1)\operatorname{Ls}_{k+1}(\pi)\)

 

 

special values

\(\int_{0}^{\pi/2}\log(\sin x)\,dx=-\frac{\pi\log 2}{2}\)

\(\int_{0}^{\pi/2}\log^2(\sin x)\,dx=\frac{\pi}{2}(\log 2)^2+\frac{\pi^3}{24}\)

\(\operatorname{Ls}_2(\pi)=-\int_{0}^{\pi}\log(2\sin \frac{x}{2})\,dx=0\)

\(\operatorname{Ls}_3(\pi)=-\int_{0}^{\pi}\log^2(2\sin \frac{x}{2})\,dx=-\frac{\pi^3}{12}\)

\(\operatorname{Ls}_4(\pi)=-\int_{0}^{\pi}\log^3(2\sin \frac{x}{2})\,dx=\frac{3\pi}{2}\zeta(3)\)

\(\operatorname{Ls}_5(\pi)=-\int_{0}^{\pi}\log^4(2\sin \frac{x}{2})\,dx=-\frac{19\pi^5}{240}\)

\(\operatorname{Ls}_6(\pi)=-\int_{0}^{\pi}\log^5(2\sin \frac{x}{2})\,dx=\frac{45\pi}{2}\zeta(5)+\frac{5\pi^3}{4}\zeta(3)\)\(\operatorname{Ls}_7(\pi)=-\int_{0}^{\pi}\log^6(2\sin \frac{x}{2})\,dx=-\frac{45\pi}{2}\zeta^2(3)-\frac{275\pi^7}{1344}\)

\(\int_{0}^{\pi/3}\log^2(2\sin \frac{x}{2})\,dx=\frac{7\pi^3}{108}\)

\(\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx=\frac{17\pi^4}{6480}\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서

 

 

관련기사

 

 

블로그