"로그 사인 적분 (log sine integrals)"의 두 판 사이의 차이
1번째 줄: | 1번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">이 항목의 스프링노트 원문주소</h5> |
* [[로그 사인 적분 (log sine integrals)]]<br> | * [[로그 사인 적분 (log sine integrals)]]<br> | ||
7번째 줄: | 7번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">개요</h5> |
* 정의<br><math>\operatorname{Ls}_{a+b,a}(\theta):=-\int_{0}^{\theta}x^a\log^{b-1}}|2\sin \frac{x}{2}|\,dx</math><br><math>\operatorname{Ls}_{n}(\theta):=\operatorname{Ls}_{n,0}(\theta)=-\int_{0}^{\theta}\log^{n-1}}(2\sin \frac{x}{2})\,dx</math><br> | * 정의<br><math>\operatorname{Ls}_{a+b,a}(\theta):=-\int_{0}^{\theta}x^a\log^{b-1}}|2\sin \frac{x}{2}|\,dx</math><br><math>\operatorname{Ls}_{n}(\theta):=\operatorname{Ls}_{n,0}(\theta)=-\int_{0}^{\theta}\log^{n-1}}(2\sin \frac{x}{2})\,dx</math><br> | ||
23번째 줄: | 23번째 줄: | ||
− | <h5 style=" | + | <h5 style="margin: 0px; line-height: 2em;">로그사인 정적분</h5> |
* 정적분 값의 계산 문제<br><math>\operatorname{Ls}_{n}(\pi)=-\int_{0}^{\pi}\log^{n-1}}(2\sin \frac{x}{2})\,dx</math><br> | * 정적분 값의 계산 문제<br><math>\operatorname{Ls}_{n}(\pi)=-\int_{0}^{\pi}\log^{n-1}}(2\sin \frac{x}{2})\,dx</math><br> | ||
72번째 줄: | 72번째 줄: | ||
− | <h5 style=" | + | <h5 style="margin: 0px; line-height: 2em;">special values</h5> |
<math>\int_{0}^{\frac{\pi}{4}}\ln (\sin t)dt =-\frac{\pi}{4}\ln 2-\frac{G}{2}</math> | <math>\int_{0}^{\frac{\pi}{4}}\ln (\sin t)dt =-\frac{\pi}{4}\ln 2-\frac{G}{2}</math> | ||
112번째 줄: | 112번째 줄: | ||
− | <h5 style=" | + | |
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">메모</h5> | ||
* [[중심이항계수(central binomial coefficient)]]<br><math>\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=4\int_{0}^{\frac{1}{2}}(\arcsin x)^2}\frac{dx}{x}=-2\int_{0}^{\pi/3}x\log(2\sin \frac{x}{2})\,dx</math><br> | * [[중심이항계수(central binomial coefficient)]]<br><math>\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=4\int_{0}^{\frac{1}{2}}(\arcsin x)^2}\frac{dx}{x}=-2\int_{0}^{\pi/3}x\log(2\sin \frac{x}{2})\,dx</math><br> | ||
121번째 줄: | 123번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">재미있는 사실</h5> |
132번째 줄: | 134번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">역사</h5> |
145번째 줄: | 147번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">메모</h5> |
− | * http://www.wolframalpha.com/input/?i=integrate+(log+(2sin(x/2)))^2+dx+from+0+to+pi/3<br> | + | * [http://www.wolframalpha.com/input/?i=integrate+%28log+%282sin%28x/2%29%29%29%5E2+dx+from+0+to+pi/3 http://www.wolframalpha.com/input/?i=integrate+(log+(2sin(x/2)))^2+dx+from+0+to+pi/3]<br> |
* http://arxiv.org/abs/hep-ph/0411100v2<br> | * http://arxiv.org/abs/hep-ph/0411100v2<br> | ||
* http://mathworld.wolfram.com/RamanujanLog-TrigonometricIntegrals.html<br> | * http://mathworld.wolfram.com/RamanujanLog-TrigonometricIntegrals.html<br> | ||
157번째 줄: | 159번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련된 항목들</h5> |
* [[로그 탄젠트 적분(log tangent integral)]]<br> | * [[로그 탄젠트 적분(log tangent integral)]]<br> | ||
172번째 줄: | 174번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">수학용어번역</h5> |
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | ||
185번째 줄: | 187번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">사전 형태의 자료</h5> |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
191번째 줄: | 193번째 줄: | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
− | * [http://www.research.att.com/ | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> |
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= | ||
198번째 줄: | 200번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련논문</h5> |
− | * [http://dx.doi.org/10.1016/S0377-0427 | + | * Borwein, David, Jonathan M Borwein, Armin Straub, and James Wan. 2011. Log-sine evaluations of Mahler measures, II. 1103.3035 (March 15). http://arxiv.org/abs/1103.3035. <br> <br> |
+ | * [http://dx.doi.org/10.1016/S0377-0427%2803%2900438-2 On some log-cosine integrals related to ζ(3), ζ(4), and ζ(6)]<br> | ||
** Mark W. Coffey, 2003 | ** Mark W. Coffey, 2003 | ||
− | * [http://www.cs.cmu.edu/ | + | * [http://www.cs.cmu.edu/%7Eadamchik/articles/Srivastava/ch_sr.pdf Multiple Gamma and Related Functions]<br> |
** J. Choi, H. M. Srivastava, V.S. Adamchik , Applied Mathematics and Computation, 134 (2003), 515-533 | ** J. Choi, H. M. Srivastava, V.S. Adamchik , Applied Mathematics and Computation, 134 (2003), 515-533 | ||
* '''[Borwein1995]'''[http://www.jstor.org/stable/2160718 On an Intriguing Integral and Some Series Related to ζ(4)]<br> | * '''[Borwein1995]'''[http://www.jstor.org/stable/2160718 On an Intriguing Integral and Some Series Related to ζ(4)]<br> | ||
221번째 줄: | 224번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련도서</h5> |
* 도서내검색<br> | * 도서내검색<br> | ||
235번째 줄: | 238번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련기사</h5> |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
246번째 줄: | 249번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">블로그</h5> |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> |
2011년 3월 17일 (목) 13:23 판
이 항목의 스프링노트 원문주소
개요
- 정의
\(\operatorname{Ls}_{a+b,a}(\theta):=-\int_{0}^{\theta}x^a\log^{b-1}}|2\sin \frac{x}{2}|\,dx\)
\(\operatorname{Ls}_{n}(\theta):=\operatorname{Ls}_{n,0}(\theta)=-\int_{0}^{\theta}\log^{n-1}}(2\sin \frac{x}{2})\,dx\)
- 클라우센 함수의 일반화로 볼 수 있다
\(\operatorname{Cl}_2(\theta)=-\int_0^{\theta} \ln |2\sin \frac{t}{2}| \,dt=\sum_{n=1}^{\infty}\frac{\sin (n\theta)}{n^2}\)
\(\int_{0}^{1-e^{i\theta}}\log^{n-1}z\frac{dz}{1-z}=-i\int_{0}^{\theta}(\frac{i}{2}(x-\pi)+\log|2\sin \frac{x}{2}|)^{n-1}\,dx \)\(=-\int_{0}^{\theta}x^a\log^{b-1}}|2\sin \frac{x}{2}|\,dx\)
로그사인 정적분
- 정적분 값의 계산 문제
\(\operatorname{Ls}_{n}(\pi)=-\int_{0}^{\pi}\log^{n-1}}(2\sin \frac{x}{2})\,dx\) - 지수생성함수
\(I(x)=\int_{0}^{\pi}e^{x\log(2\sin \frac{1}{2}\theta)}d\theta =\sum_{n=0}^{\infty}\int_{0}^{\pi}\frac{x^n}{n!}\log^n(2\sin\frac{1}{2}\theta)d\theta=-\sum_{n=0}^{\infty}\frac{x^n}{n!}\operatorname{Ls}_{n+1}(\pi)\)
- 정적분의 점화식
\(\operatorname{Ls}_{m+2}(\pi)=(-1)^{m}m![\pi(1-2^{-m})\zeta(m+1)-\sum_{k=2}^{m-1}(-1)^{k}\frac{1-2^{k-m}}{k!}\zeta(m-k+1)\operatorname{Ls}_{k+1}(\pi)\) - 이 정적분은 \(\ln 2\)와 \(\zeta(n), n\geq 2\) 의 다항식으로 표현할 수 있다[Bowman1947]
- 다음 정리로부터 이러한 결과들을 이해할 수 있다
(정리) [Lewin1958]
\(I(x)=\frac{\pi\Gamma(1+x)}{(\Gamma(1+\frac{1}{2}x))^2}\)
\(\log I(x)=\log {\pi}+\sum_{k=2}^{\infty}(-1)^k (1-2^{1-k})\frac{\zeta(k)}{k}x^k\)
(증명)
오일러 베타적분 의 결과를 이용하자.
\(\int_0^{\frac{\pi}{2}}\sin^{p}\theta{d\theta}= \frac{1}{2}B(\frac{p+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{p}{2}+\frac{1}{2})}{2\Gamma(\frac{p}{2}+1)}\)
\(I(x)=\int_{0}^{\pi}e^{x\log(2\sin \frac{1}{2}\theta)}d\theta =\int_{0}^{\pi}(2\sin \frac{1}{2}\theta)^{x}\,d\theta=2^{x+1}\int_{0}^{\pi/2}\sin^{x}t\,dt=\sqrt{\pi}\frac{2^x\Gamma(\frac{x}{2}+\frac{1}{2})}{\Gamma(\frac{x}{2}+1)}\)
여기서 감마함수의 곱셈공식 \(2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)\) 을 이용하면, 우변을 정리하여 원하는 식을 얻는다.
한편,
\(\log I(x)=\log {\pi}+\sum_{k=2}^{\infty}(-1)^k (1-2^{1-k})\frac{\zeta(k)}{k}x^k\) 를 구하려면, 로그감마 함수의 테일러전개를 이용하면 된다. \(\log\Gamma(1+x) =-\gamma x+\sum_{k=2}^{\infty}(-1)^k \frac{\zeta(k)}{k}x^k\) ■
- 노트*
\(\frac{1}{\pi}\int_{0}^{\pi}2^{x}\sin^{x}\frac{1}{2}\theta\,d\theta=\frac{1}{\pi}\int_{0}^{\pi}2^{x}\cos^{x}\frac{1}{2}\theta\,d\theta=\frac{\Gamma(1+x)}{\Gamma(1+\frac{1}{2}x)\Gamma(1+\frac{1}{2}x)}\)
좀 더 일반적으로
\(\frac{1}{\pi}\int_{0}^{\pi}2^{x}\cos^{x}\frac{1}{2}\theta\cos y\theta \,d\theta=\frac{\Gamma(1+x)}{\Gamma(1+\frac{1}{2}x+y)\Gamma(1+\frac{1}{2}x-y)}\) 가 성립한다. [Borwein1995]
special values
\(\int_{0}^{\frac{\pi}{4}}\ln (\sin t)dt =-\frac{\pi}{4}\ln 2-\frac{G}{2}\)
\(\int_{0}^{\frac{\pi}{4}}\ln (\cos t)dt =-\frac{\pi}{4}\ln 2+\frac{G}{2}\)
\(\int_{0}^{\frac{\pi}{4}}t\ln (\sin t)dt =\frac{35}{128}\zeta(3)-\frac{\pi G}{8}-\frac{\pi^2}{32}\log 2\)
(여기서 G는 카탈란 상수)
\(\int_{0}^{\pi/3}\log^2(2\sin \frac{x}{2})\,dx=\frac{7\pi^3}{108}\)
\(\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx=\frac{17\pi^4}{6480}\)
\(\int_{0}^{\pi}\log(2\sin \frac{x}{2})\,dx=0\)
\(\int_{0}^{\pi/2}\log(\sin x)\,dx=-\frac{\pi\log 2}{2}\)
\(\int_{0}^{\pi/2}x\log(\sin x)\,dx=\frac{7}{16}\zeta(3)-\frac{\pi^2}{8}\log 2\)
\(\int_{0}^{\frac{\pi}{2}}x^2 \ln (\sin x)dx=-\frac{\pi^3}{24}\ln 2+\frac{3}{16} \zeta(3)\)
\(\int_{0}^{\pi/2}\log^2(\sin x)\,dx=\frac{\pi}{2}(\log 2)^2+\frac{\pi^3}{24}\)
\(\int_{0}^{\pi}\log^2(2\sin \frac{x}{2})\,dx=\frac{\pi^3}{12}\)
\(\int_{0}^{\pi}x^2\log^2(2\cos \frac{x}{2})\,dx=\frac{11\pi^5}{180}\)
\(\int_{0}^{\pi}\log^3(2\sin \frac{x}{2})\,dx=-\frac{3\pi}{2}\zeta(3)\)
\(\int_{0}^{\pi}\log^4(2\sin \frac{x}{2})\,dx=\frac{19\pi^5}{240}\)
\(\int_{0}^{\pi}\log^5(2\sin \frac{x}{2})\,dx=-\frac{45\pi}{2}\zeta(5)-\frac{5\pi^3}{4}\zeta(3)\)
\(\int_{0}^{\pi}\log^6(2\sin \frac{x}{2})\,dx=\frac{45\pi}{2}\zeta^2(3)+\frac{275\pi^7}{1344}\)
메모
- 중심이항계수(central binomial coefficient)
\(\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=4\int_{0}^{\frac{1}{2}}(\arcsin x)^2}\frac{dx}{x}=-2\int_{0}^{\pi/3}x\log(2\sin \frac{x}{2})\,dx\) - http://cjackal.tistory.com/109
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
- http://www.google.com/search?hl=en&tbs=tl:1&q=log+sine+integral
- http://www.google.com/search?hl=en&tbs=tl:1&q=
- 수학사연표
메모
- http://www.wolframalpha.com/input/?i=integrate+(log+(2sin(x/2)))^2+dx+from+0+to+pi/3
- http://arxiv.org/abs/hep-ph/0411100v2
- http://mathworld.wolfram.com/RamanujanLog-TrigonometricIntegrals.html
관련된 항목들
- 로그 탄젠트 적분(log tangent integral)
- 다이로그 함수(dilogarithm )
- 폴리로그 함수(polylogarithm)
- 로바체프스키와 클라우센 함수
- 정수에서의 리만제타함수의 값[[폴리로그 함수(polylogarithm)|]]
- 중심이항계수(central binomial coefficient)
- 오일러 베타적분[[로그 탄젠트 적분(log tangent integral)|]]
-
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Borwein, David, Jonathan M Borwein, Armin Straub, and James Wan. 2011. Log-sine evaluations of Mahler measures, II. 1103.3035 (March 15). http://arxiv.org/abs/1103.3035.
- On some log-cosine integrals related to ζ(3), ζ(4), and ζ(6)
- Mark W. Coffey, 2003
- Multiple Gamma and Related Functions
- J. Choi, H. M. Srivastava, V.S. Adamchik , Applied Mathematics and Computation, 134 (2003), 515-533
- [Borwein1995]On an Intriguing Integral and Some Series Related to ζ(4)
- David Borwein and Jonathan M. Borwein, Proceedings of the American Mathematical Society, Vol. 123, No. 4 (Apr., 1995), pp. 1191-1198
- Some wonderful formulas ... an introduction to polylogarithms
- A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286
- On the value of a logarithmic-trigonometric integral
- K. S. Kölbig, 1970
- [Lewin1958]On the Evaluation of log-sine Integrals
- L. Lewin The Mathematical Gazette, Vol. 42, No. 340 (May, 1958), pp. 125-128
- L. Lewin The Mathematical Gazette, Vol. 42, No. 340 (May, 1958), pp. 125-128
- [Bowman1947]Note on the Integral
- F. Bowman, J. London Math. Soc. 1947 s1-22: 172-173
- F. Bowman, J. London Math. Soc. 1947 s1-22: 172-173
- http://www.jstor.org/stable/3609410
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/10.1007/BF01935325
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)