"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
* [http://en.wikipedia.org/wiki/1617 1617] - [http://en.wikipedia.org/wiki/Henry_Briggs_%28mathematician%29 Henry Briggs] discusses decimal logarithms in <em style="">Logarithmorum Chilias Prima</em>,
 
* [http://en.wikipedia.org/wiki/1617 1617] - [http://en.wikipedia.org/wiki/Henry_Briggs_%28mathematician%29 Henry Briggs] discusses decimal logarithms in <em style="">Logarithmorum Chilias Prima</em>,
 
* [http://en.wikipedia.org/wiki/1618 1618] - 네이피어가 로그와 관련한 작업을 통하여 [[자연상수 e|자연상수]]에 대한 첫번째 출판을 함
 
* [http://en.wikipedia.org/wiki/1618 1618] - 네이피어가 로그와 관련한 작업을 통하여 [[자연상수 e|자연상수]]에 대한 첫번째 출판을 함
* [http://en.wikipedia.org/wiki/1619 1619] - 데카르트가 해석기하학을 발견 ([http://en.wikipedia.org/wiki/Pierre_de_Fermat Pierre de Fermat] claimed that he also discovered it independently),
+
* 1619 - 데카르트가 해석기하학을 발견 ([http://en.wikipedia.org/wiki/Pierre_de_Fermat Pierre de Fermat] claimed that he also discovered it independently),
 
* [http://en.wikipedia.org/wiki/1619 1619] - [http://en.wikipedia.org/wiki/Johannes_Kepler Johannes Kepler] discovers two of the [http://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedra Kepler-Poinsot polyhedra].
 
* [http://en.wikipedia.org/wiki/1619 1619] - [http://en.wikipedia.org/wiki/Johannes_Kepler Johannes Kepler] discovers two of the [http://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedra Kepler-Poinsot polyhedra].
 
* [http://en.wikipedia.org/wiki/1629 1629] - 페르마가 기초적인 미분학을 발전시킴
 
* [http://en.wikipedia.org/wiki/1629 1629] - 페르마가 기초적인 미분학을 발전시킴
65번째 줄: 65번째 줄:
 
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Louis_Poinsot Louis Poinsot] discovers the two remaining [http://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedra Kepler-Poinsot polyhedra].
 
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Louis_Poinsot Louis Poinsot] discovers the two remaining [http://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedra Kepler-Poinsot polyhedra].
 
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Jean-Robert_Argand Jean-Robert Argand] publishes proof of the [http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra Fundamental theorem of algebra] and the [http://en.wikipedia.org/wiki/Argand_diagram Argand diagram],
 
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Jean-Robert_Argand Jean-Robert Argand] publishes proof of the [http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra Fundamental theorem of algebra] and the [http://en.wikipedia.org/wiki/Argand_diagram Argand diagram],
* [http://en.wikipedia.org/wiki/1807 1807] - [http://en.wikipedia.org/wiki/Joseph_Fourier Joseph Fourier] announces his discoveries about the [http://en.wikipedia.org/wiki/Fourier_series trigonometric decomposition of functions],
+
* 1807 - 푸리에가 함수의 삼각함수로의 분해를 발표
 
* [http://en.wikipedia.org/wiki/1811 1811] - Carl Friedrich Gauss discusses the meaning of integrals with complex limits and briefly examines the dependence of such integrals on the chosen path of integration,
 
* [http://en.wikipedia.org/wiki/1811 1811] - Carl Friedrich Gauss discusses the meaning of integrals with complex limits and briefly examines the dependence of such integrals on the chosen path of integration,
 
* [http://en.wikipedia.org/wiki/1815 1815] - [http://en.wikipedia.org/wiki/Simeon_Poisson Siméon-Denis Poisson] carries out integrations along paths in the complex plane,
 
* [http://en.wikipedia.org/wiki/1815 1815] - [http://en.wikipedia.org/wiki/Simeon_Poisson Siméon-Denis Poisson] carries out integrations along paths in the complex plane,
 
* [http://en.wikipedia.org/wiki/1817 1817] - [http://en.wikipedia.org/wiki/Bernard_Bolzano Bernard Bolzano] presents the [http://en.wikipedia.org/wiki/Intermediate_value_theorem intermediate value theorem]---a [http://en.wikipedia.org/wiki/Continuous_function continuous function] which is negative at one point and positive at another point must be zero for at least one point in between,
 
* [http://en.wikipedia.org/wiki/1817 1817] - [http://en.wikipedia.org/wiki/Bernard_Bolzano Bernard Bolzano] presents the [http://en.wikipedia.org/wiki/Intermediate_value_theorem intermediate value theorem]---a [http://en.wikipedia.org/wiki/Continuous_function continuous function] which is negative at one point and positive at another point must be zero for at least one point in between,
* [http://en.wikipedia.org/wiki/1822 1822] - [http://en.wikipedia.org/wiki/Augustin-Louis_Cauchy Augustin-Louis Cauchy] presents the [http://en.wikipedia.org/wiki/Cauchy_integral_theorem Cauchy integral theorem] for integration around the boundary of a rectangle in the [http://en.wikipedia.org/wiki/Complex_plane complex plane],
+
* 1822 -코쉬가 [[복소함수론]]에서 사각형의 둘레를 따라 적분한데 대한 코쉬정리를 발표함
 
* [http://en.wikipedia.org/wiki/1824 1824] - [http://en.wikipedia.org/wiki/Niels_Henrik_Abel Niels Henrik Abel] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that the general [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula involving only arithmetical operations and roots,
 
* [http://en.wikipedia.org/wiki/1824 1824] - [http://en.wikipedia.org/wiki/Niels_Henrik_Abel Niels Henrik Abel] partially proves the [http://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem Abel–Ruffini theorem] that the general [http://en.wikipedia.org/wiki/Quintic_equation quintic] or higher equations cannot be solved by a general formula involving only arithmetical operations and roots,
 
* [http://en.wikipedia.org/wiki/1825 1825] - Augustin-Louis Cauchy presents the [http://en.wikipedia.org/wiki/Cauchy_integral_theorem Cauchy integral theorem] for general integration paths -- he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis],
 
* [http://en.wikipedia.org/wiki/1825 1825] - Augustin-Louis Cauchy presents the [http://en.wikipedia.org/wiki/Cauchy_integral_theorem Cauchy integral theorem] for general integration paths -- he assumes the function being integrated has a continuous derivative, and he introduces the theory of [http://en.wikipedia.org/wiki/Residue_%28complex_analysis%29 residues] in [http://en.wikipedia.org/wiki/Complex_analysis complex analysis],
75번째 줄: 75번째 줄:
 
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] discovers [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem],
 
* [http://en.wikipedia.org/wiki/1825 1825] - [http://en.wikipedia.org/wiki/Andre_Marie_Ampere André-Marie Ampère] discovers [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem],
 
* [http://en.wikipedia.org/wiki/1828 1828] - George Green proves [http://en.wikipedia.org/wiki/Green%27s_theorem Green's theorem],
 
* [http://en.wikipedia.org/wiki/1828 1828] - George Green proves [http://en.wikipedia.org/wiki/Green%27s_theorem Green's theorem],
* [http://en.wikipedia.org/wiki/1829 1829] - 볼리아이, 가우스, 로바체프스키가 [[#|쌍곡기하학]]을 발견
+
* 1829 - 볼리아이, 가우스, 로바체프스키가 [[#|쌍곡기하학]]을 발견
 
* [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green,
 
* [http://en.wikipedia.org/wiki/1831 1831] - [http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky Mikhail Vasilievich Ostrogradsky] rediscovers and gives the first proof of the divergence theorem earlier described by Lagrange, Gauss and Green,
 
* [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory],
 
* [http://en.wikipedia.org/wiki/1832 1832] - [http://en.wikipedia.org/wiki/%C3%89variste_Galois Évariste Galois] presents a general condition for the solvability of [http://en.wikipedia.org/wiki/Algebraic_equation algebraic equations], thereby essentially founding [http://en.wikipedia.org/wiki/Group_theory group theory] and [http://en.wikipedia.org/wiki/Galois_theory Galois theory],
88번째 줄: 88번째 줄:
 
* [http://en.wikipedia.org/wiki/1850 1850] - [http://en.wikipedia.org/wiki/Victor_Alexandre_Puiseux Victor Alexandre Puiseux] distinguishes between poles and branch points and introduces the concept of [http://en.wikipedia.org/wiki/Mathematical_singularity essential singular points],
 
* [http://en.wikipedia.org/wiki/1850 1850] - [http://en.wikipedia.org/wiki/Victor_Alexandre_Puiseux Victor Alexandre Puiseux] distinguishes between poles and branch points and introduces the concept of [http://en.wikipedia.org/wiki/Mathematical_singularity essential singular points],
 
* [http://en.wikipedia.org/wiki/1850 1850] - George Gabriel Stokes rediscovers and proves [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem],
 
* [http://en.wikipedia.org/wiki/1850 1850] - George Gabriel Stokes rediscovers and proves [http://en.wikipedia.org/wiki/Stokes%27_theorem Stokes' theorem],
* [http://en.wikipedia.org/wiki/1854 1854] - 리만이 [[#]]을 소개
+
* 1854 - 리만이 리만기하학을 소개
 
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Arthur_Cayley Arthur Cayley] shows that [http://en.wikipedia.org/wiki/Quaternion quaternions] can be used to represent rotations in four-dimensional [http://en.wikipedia.org/wiki/Space space],
 
* [http://en.wikipedia.org/wiki/1854 1854] - [http://en.wikipedia.org/wiki/Arthur_Cayley Arthur Cayley] shows that [http://en.wikipedia.org/wiki/Quaternion quaternions] can be used to represent rotations in four-dimensional [http://en.wikipedia.org/wiki/Space space],
 
* 1858 - 뫼비우스가 [[#|뫼비우스의 띠]]를 발견
 
* 1858 - 뫼비우스가 [[#|뫼비우스의 띠]]를 발견

2009년 10월 6일 (화) 14:42 판

 

17세기


18세기


19세기


20세기

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상