"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
8번째 줄: 8번째 줄:
  
 
* [http://en.wikipedia.org/wiki/17th_century 1600s] - Putumana Somayaji writes the "Paddhati", which presents a detailed discussion of various trigonometric series
 
* [http://en.wikipedia.org/wiki/17th_century 1600s] - Putumana Somayaji writes the "Paddhati", which presents a detailed discussion of various trigonometric series
* [http://en.wikipedia.org/wiki/1614 1614] -존 네이피어가   discusses Napierian [http://en.wikipedia.org/wiki/Logarithm logarithms] in
+
* [http://en.wikipedia.org/wiki/1614 1614] -존 네이피어가 <em style="">Mirifici Logarithmorum Canonis Descriptio</em>에서 네이피어 로그의 개념을 논함
 
* [http://en.wikipedia.org/wiki/1617 1617] - [http://en.wikipedia.org/wiki/Henry_Briggs_%28mathematician%29 Henry Briggs] discusses decimal logarithms in <em style="">Logarithmorum Chilias Prima</em>,
 
* [http://en.wikipedia.org/wiki/1617 1617] - [http://en.wikipedia.org/wiki/Henry_Briggs_%28mathematician%29 Henry Briggs] discusses decimal logarithms in <em style="">Logarithmorum Chilias Prima</em>,
 
* [http://en.wikipedia.org/wiki/1618 1618] - 네이피어가 로그와 관련한 작업을 통하여 [[자연상수 e|자연상수]]에 대한 첫번째 출판을 함
 
* [http://en.wikipedia.org/wiki/1618 1618] - 네이피어가 로그와 관련한 작업을 통하여 [[자연상수 e|자연상수]]에 대한 첫번째 출판을 함
19번째 줄: 19번째 줄:
 
* [http://en.wikipedia.org/wiki/1637 1637] - First use of the term [http://en.wikipedia.org/wiki/Imaginary_number imaginary number] by [http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes René Descartes]; it was meant to be derogatory.
 
* [http://en.wikipedia.org/wiki/1637 1637] - First use of the term [http://en.wikipedia.org/wiki/Imaginary_number imaginary number] by [http://en.wikipedia.org/wiki/Ren%C3%A9_Descartes René Descartes]; it was meant to be derogatory.
 
* [http://en.wikipedia.org/wiki/1654 1654] - 파스칼과 페르마가 확률론을 창시
 
* [http://en.wikipedia.org/wiki/1654 1654] - 파스칼과 페르마가 확률론을 창시
* [http://en.wikipedia.org/wiki/1655 1655] - [http://en.wikipedia.org/wiki/John_Wallis John Wallis] writes <em style="">Arithmetica Infinitorum</em>,
+
* 1655 - 존 월리스가 <em style="">Arithmetica Infinitorum</em>를 저술
 
* 1658 - [http://en.wikipedia.org/wiki/Christopher_Wren Christopher Wren] 사이클로이드의 길이가 기본원의 네 배임을 증명
 
* 1658 - [http://en.wikipedia.org/wiki/Christopher_Wren Christopher Wren] 사이클로이드의 길이가 기본원의 네 배임을 증명
 
* [http://en.wikipedia.org/wiki/1665 1665] - 뉴턴이 [[미적분학의 기본정리]]를 연구하고 미적분학을 발전시킴
 
* [http://en.wikipedia.org/wiki/1665 1665] - 뉴턴이 [[미적분학의 기본정리]]를 연구하고 미적분학을 발전시킴
73번째 줄: 73번째 줄:
 
* [http://en.wikipedia.org/wiki/1801 1801] - 가우스가 <em style="">[http://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae Disquisitiones Arithmeticae]</em>를 출판함.
 
* [http://en.wikipedia.org/wiki/1801 1801] - 가우스가 <em style="">[http://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae Disquisitiones Arithmeticae]</em>를 출판함.
 
* [http://en.wikipedia.org/wiki/1805 1805] - 르장드르가 최소자승의 법칙을 도입함.
 
* [http://en.wikipedia.org/wiki/1805 1805] - 르장드르가 최소자승의 법칙을 도입함.
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Louis_Poinsot Louis Poinsot] discovers the two remaining [http://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedra Kepler-Poinsot polyhedra].
+
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Louis_Poinsot Louis Poinsot] discovers the two remaining [http://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedra Kepler-][http://en.wikipedia.org/wiki/Kepler-Poinsot_polyhedra Poinsot polyhedra].
 
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Jean-Robert_Argand Jean-Robert Argand] publishes proof of the [http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra Fundamental theorem of algebra] and the [http://en.wikipedia.org/wiki/Argand_diagram Argand diagram],
 
* [http://en.wikipedia.org/wiki/1806 1806] - [http://en.wikipedia.org/wiki/Jean-Robert_Argand Jean-Robert Argand] publishes proof of the [http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra Fundamental theorem of algebra] and the [http://en.wikipedia.org/wiki/Argand_diagram Argand diagram],
 
* 1807 - 푸리에가 함수의 삼각함수로의 분해를 발표
 
* 1807 - 푸리에가 함수의 삼각함수로의 분해를 발표
134번째 줄: 134번째 줄:
 
* [http://en.wikipedia.org/wiki/1912 1912] - Josip Plemelj publishes simplified proof for the Fermat's Last Theorem for exponent <em style="">n</em> = 5,
 
* [http://en.wikipedia.org/wiki/1912 1912] - Josip Plemelj publishes simplified proof for the Fermat's Last Theorem for exponent <em style="">n</em> = 5,
 
* [http://en.wikipedia.org/wiki/1913 1913] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] sends a long list of complex theorems without proofs to [http://en.wikipedia.org/wiki/G._H._Hardy G. H. Hardy],
 
* [http://en.wikipedia.org/wiki/1913 1913] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] sends a long list of complex theorems without proofs to [http://en.wikipedia.org/wiki/G._H._Hardy G. H. Hardy],
* [http://en.wikipedia.org/wiki/1914 1914] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] publishes <em style="">Modular Equations and Approximations to π</em>,
+
* [http://en.wikipedia.org/wiki/1914 1914] -  publishes <em style="">Modular Equations and Approximations to π</em>,
 
* [http://en.wikipedia.org/wiki/1916 1916] - [http://en.wikipedia.org/wiki/Albert_Einstein Einstein's] theory of [http://en.wikipedia.org/wiki/General_relativity general relativity].
 
* [http://en.wikipedia.org/wiki/1916 1916] - [http://en.wikipedia.org/wiki/Albert_Einstein Einstein's] theory of [http://en.wikipedia.org/wiki/General_relativity general relativity].
 
* [http://en.wikipedia.org/wiki/1910s 1910s] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] develops over 3000 theorems, including properties of [http://en.wikipedia.org/wiki/Highly_composite_number highly composite numbers], the [http://en.wikipedia.org/wiki/Partition_function_%28number_theory%29 partition function] and its [http://en.wikipedia.org/wiki/Asymptotics asymptotics], and [http://en.wikipedia.org/wiki/Ramanujan_theta_function mock theta functions]. He also makes major breakthroughs and discoveries in the areas of [http://en.wikipedia.org/wiki/Gamma_function gamma functions], [http://en.wikipedia.org/wiki/Modular_form modular forms], [http://en.wikipedia.org/wiki/Divergent_series divergent series], [http://en.wikipedia.org/wiki/Hypergeometric_series hypergeometric series] and [http://en.wikipedia.org/wiki/Prime_number_theory prime number theory]
 
* [http://en.wikipedia.org/wiki/1910s 1910s] - [http://en.wikipedia.org/wiki/Srinivasa_Aaiyangar_Ramanujan Srinivasa Aaiyangar Ramanujan] develops over 3000 theorems, including properties of [http://en.wikipedia.org/wiki/Highly_composite_number highly composite numbers], the [http://en.wikipedia.org/wiki/Partition_function_%28number_theory%29 partition function] and its [http://en.wikipedia.org/wiki/Asymptotics asymptotics], and [http://en.wikipedia.org/wiki/Ramanujan_theta_function mock theta functions]. He also makes major breakthroughs and discoveries in the areas of [http://en.wikipedia.org/wiki/Gamma_function gamma functions], [http://en.wikipedia.org/wiki/Modular_form modular forms], [http://en.wikipedia.org/wiki/Divergent_series divergent series], [http://en.wikipedia.org/wiki/Hypergeometric_series hypergeometric series] and [http://en.wikipedia.org/wiki/Prime_number_theory prime number theory]

2009년 12월 4일 (금) 19:52 판

 

 

17세기

 

 


18세기


 

 

19세기


 

20세기

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상