"수학사 연표"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
25번째 줄: 25번째 줄:
 
* [http://en.wikipedia.org/wiki/1665 1665] - 뉴턴이 [[미적분학의 기본정리]]를 연구하고 미적분학을 발전시킴
 
* [http://en.wikipedia.org/wiki/1665 1665] - 뉴턴이 [[미적분학의 기본정리]]를 연구하고 미적분학을 발전시킴
 
* [http://en.wikipedia.org/wiki/1668 1668] - [http://en.wikipedia.org/wiki/Nicholas_Mercator Nicholas Mercator] and [http://en.wikipedia.org/wiki/William_Brouncker William Brouncker] discover an [http://en.wikipedia.org/wiki/Infinite_series infinite series] for the logarithm while attempting to calculate the area under a [http://en.wikipedia.org/w/index.php?title=Hyperbolic_segment&action=edit&redlink=1 hyperbolic segment],
 
* [http://en.wikipedia.org/wiki/1668 1668] - [http://en.wikipedia.org/wiki/Nicholas_Mercator Nicholas Mercator] and [http://en.wikipedia.org/wiki/William_Brouncker William Brouncker] discover an [http://en.wikipedia.org/wiki/Infinite_series infinite series] for the logarithm while attempting to calculate the area under a [http://en.wikipedia.org/w/index.php?title=Hyperbolic_segment&action=edit&redlink=1 hyperbolic segment],
* [http://en.wikipedia.org/wiki/1671 1671] - 제임스 그레고리가 아크탄젠트함수의 급수표현을 발견([[#]] (originally discovered by [http://en.wikipedia.org/wiki/Madhava_of_Sangamagrama Madhava])
+
* [http://en.wikipedia.org/wiki/1671 1671] - 제임스 그레고리가 아크탄젠트함수의 급수표현을 발견([[그레고리-라이프니츠 급수]]) (originally discovered by [http://en.wikipedia.org/wiki/Madhava_of_Sangamagrama Madhava])
 
* [http://en.wikipedia.org/wiki/1673 1673] - [http://en.wikipedia.org/wiki/Gottfried_Leibniz Gottfried Leibniz] also develops his version of [http://en.wikipedia.org/wiki/Infinitesimal_calculus infinitesimal calculus],
 
* [http://en.wikipedia.org/wiki/1673 1673] - [http://en.wikipedia.org/wiki/Gottfried_Leibniz Gottfried Leibniz] also develops his version of [http://en.wikipedia.org/wiki/Infinitesimal_calculus infinitesimal calculus],
 
* [http://en.wikipedia.org/wiki/1675 1675] - Isaac Newton invents an algorithm for the [http://en.wikipedia.org/wiki/Newton%27s_method computation of functional roots],
 
* [http://en.wikipedia.org/wiki/1675 1675] - Isaac Newton invents an algorithm for the [http://en.wikipedia.org/wiki/Newton%27s_method computation of functional roots],
106번째 줄: 106번째 줄:
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
 
* [http://en.wikipedia.org/wiki/1870 1870] - [http://en.wikipedia.org/wiki/Felix_Klein Felix Klein] constructs an analytic geometry for Lobachevski's geometry thereby establishing its self-consistency and the logical independence of Euclid's fifth postulate,
 
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Charles_Hermite Charles Hermite] proves that [http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 e] is transcendental, [[#|자연상수 e는 초월수이다]]
 
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Charles_Hermite Charles Hermite] proves that [http://en.wikipedia.org/wiki/E_%28mathematical_constant%29 e] is transcendental, [[#|자연상수 e는 초월수이다]]
* [http://en.wikipedia.org/wiki/1873 1873] - [http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius] presents his method for finding series solutions to linear differential equations with [http://en.wikipedia.org/wiki/Regular_singular_point regular singular points],
+
* [http://en.wikipedia.org/wiki/1873 1873] - 프로베니우스ㄱ [http://en.wikipedia.org/wiki/Georg_Frobenius Georg Frobenius] presents his method for finding series solutions to linear differential equations with [http://en.wikipedia.org/wiki/Regular_singular_point regular singular points],
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
 
* [http://en.wikipedia.org/wiki/1874 1874] - [http://en.wikipedia.org/wiki/Georg_Cantor Georg Cantor] shows that the set of all [http://en.wikipedia.org/wiki/Real_number real numbers] is [http://en.wikipedia.org/wiki/Uncountable uncountably infinite] but the set of all [http://en.wikipedia.org/wiki/Algebraic_number algebraic numbers] is [http://en.wikipedia.org/wiki/Countable countably infinite]. Contrary to widely held beliefs, his method was not his famous [http://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument diagonal argument], which he published three years later. (Nor did he formulate [http://en.wikipedia.org/wiki/Set_theory set theory] at this time.)
 
* [http://en.wikipedia.org/wiki/1878 1878] - Charles Hermite solves the general quintic equation by means of elliptic and modular functions<br>
 
* [http://en.wikipedia.org/wiki/1878 1878] - Charles Hermite solves the general quintic equation by means of elliptic and modular functions<br>

2010년 8월 13일 (금) 10:10 판

 

 

17세기

 

 


18세기


 

 

19세기


 

 

20세기

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상