"오일러의 소수생성다항식 x²+x+41"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
4번째 줄: | 4번째 줄: | ||
* 비슷한 예로, 아래는 정수 <math>0\le x\le q-2</math> 일 때, <math>x^2+x+q</math>가 모두 소수인 경우 | * 비슷한 예로, 아래는 정수 <math>0\le x\le q-2</math> 일 때, <math>x^2+x+q</math>가 모두 소수인 경우 | ||
* <math>x^2+x+2</math>, <math>x^2+x+3</math>, <math>x^2+x+5</math>, <math>x^2+x+11</math>, <math>x^2+x+17</math> | * <math>x^2+x+2</math>, <math>x^2+x+3</math>, <math>x^2+x+5</math>, <math>x^2+x+11</math>, <math>x^2+x+17</math> | ||
− | * 이 성질은 이차수체의 class number 개념을 사용하여 설명할 수 있다. | + | * 이 성질은 이차수체의 class number 개념을 사용하여 설명할 수 있다. 위의 다항식의 근으로 생성되는, 이차수체는 모두 class number가 1이 된다. |
− | * <math>\mathbb{Z}\[\frac{-1+\sqrt{-7}}{2}\],\mathbb{Z}\[\frac{-1+\sqrt{-11}}{2}\],\mathbb{Z}\[\frac{-1+\sqrt{-19}}{2}\],\mathbb{Z}\[\frac{-1+\sqrt{-43}}{2}\],\mathbb{Z}\[\frac{-1+\sqrt{-67}}{2}\], \mathbb{Z}\[\frac{-1+\sqrt{-163}}{2}\]</math> | + | * <math>\mathbb{Z}\[\frac{-1+\sqrt{-7}}{2}\]</math> ,<math>\mathbb{Z}\[\frac{-1+\sqrt{-11}}{2}\]</math>, <math>\mathbb{Z}\[\frac{-1+\sqrt{-19}}{2}\]</math>, <math>\mathbb{Z}\[\frac{-1+\sqrt{-43}}{2}\]</math>, <math>\mathbb{Z}\[\frac{-1+\sqrt{-67}}{2}\]</math> ,<math>\mathbb{Z}\[\frac{-1+\sqrt{-163}}{2}\]</math>가 모두 UFD 라는 사실과 동치이다.<br> <br> |
− | |||
<h5>관련된 학부 과목과 미리 알고 있으면 좋은 것들</h5> | <h5>관련된 학부 과목과 미리 알고 있으면 좋은 것들</h5> | ||
* [[초등정수론]] | * [[초등정수론]] | ||
+ | * [[추상대수학]]<br> | ||
+ | ** UFD | ||
29번째 줄: | 30번째 줄: | ||
<h5>표준적인 도서 및 추천도서</h5> | <h5>표준적인 도서 및 추천도서</h5> | ||
− | + | * | |
2008년 10월 26일 (일) 07:13 판
간단한 소개
- \(x^2+x+41\)는 정수 \(0 \le x \le 39\) 일때, 모두 소수가 된다!!!
- 비슷한 예로, 아래는 정수 \(0\le x\le q-2\) 일 때, \(x^2+x+q\)가 모두 소수인 경우
- \(x^2+x+2\), \(x^2+x+3\), \(x^2+x+5\), \(x^2+x+11\), \(x^2+x+17\)
- 이 성질은 이차수체의 class number 개념을 사용하여 설명할 수 있다. 위의 다항식의 근으로 생성되는, 이차수체는 모두 class number가 1이 된다.
- \(\mathbb{Z}'"`UNIQ-MathJax1-QINU`"'\) ,\(\mathbb{Z}'"`UNIQ-MathJax2-QINU`"'\), \(\mathbb{Z}'"`UNIQ-MathJax3-QINU`"'\), \(\mathbb{Z}'"`UNIQ-MathJax4-QINU`"'\), \(\mathbb{Z}'"`UNIQ-MathJax5-QINU`"'\) ,\(\mathbb{Z}'"`UNIQ-MathJax6-QINU`"'\)가 모두 UFD 라는 사실과 동치이다.
관련된 학부 과목과 미리 알고 있으면 좋은 것들
관련된 대학원 과목
관련된 다른 주제들
- 이차 수체(quadratic number fields) 의 정수론
- Binary integral quadratic forms and Gauss' class number one problem
표준적인 도서 및 추천도서
참고할만한 자료