"자코비의 네 제곱수 정리"의 두 판 사이의 차이
44번째 줄: | 44번째 줄: | ||
<h5 style="margin: 0px; line-height: 2em;">모듈라 형식을 이용한 증명</h5> | <h5 style="margin: 0px; line-height: 2em;">모듈라 형식을 이용한 증명</h5> | ||
− | |||
− | |||
<math>\theta^4(q)=(\sum_{n=-\infty}^\infty q^{n^2})^4=(1+2\sum_{n=1}^\infty q^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)q^n</math> 이라 두자. | <math>\theta^4(q)=(\sum_{n=-\infty}^\infty q^{n^2})^4=(1+2\sum_{n=1}^\infty q^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)q^n</math> 이라 두자. | ||
59번째 줄: | 57번째 줄: | ||
− | + | <math>\frac{d}{d\tau}\log \frac{\eta(2\tau)}{\eta(\frac{\tau}{2})}=c\frac{\eta(\tau)^{20}}{\eta(2\tau)^{8}\eta(\frac{\tau}{2})^{8}}=c\theta^4(\tau)</math> | |
2009년 11월 30일 (월) 12:59 판
이 항목의 스프링노트 원문주소
개요
- 라그랑지의 네 제곱수 정리는 모든 자연수는 네 개의 제곱수의 합으로 표현가능함을 말해준다
- 자코비는 세타함수 를 이용하여 주어진 자연수가 네 개의 제곱수의 합으로 얼마나 많은 방법으로 표현가능한지의 문제를 해결
\(\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}\), \(q=e^{2\pi i \tau}\) - \(x=e^{\pi i \tau}\) 로 두면,
\(\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}=1+2\sum_{n=1}^\infty x^{n^2}\)
\(\theta^4(x)=(\sum_{n=-\infty}^\infty x^{n^2})^4=(1+2\sum_{n=1}^\infty x^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)x^n\)
여기서 \(r_4(n)\) 는 \(x_1^2+x_2^2+x_3^2+x_4^2=n\)의 정수해 \((x_1,x_2,x_3,x_4)\)의 개수, 즉 자연수 \(n\)을 네 정수의 제곱의 합으로 쓰는 방법의 수
정리
(정리) 자코비의 네제곱수 정리
\(r_4(n)=8\sum_{m|n,4\nmid m}m\)
예
- \(r_4(1)=8\)
\((\pm1)^2+0^2+0^2+0^2=1\)이므로
\(2\times {4\choose 1}=8\) - \(r_4(2)=24\)
\((\pm1)^2+(\pm1)^2+0^2+0^2=2\)
... 으로부터
\(4\times {4\choose 2}=24\) - \(r_4(3)=32\)
\((\pm1)^2+(\pm1)^2+(\pm1)^2+0^2=3\)
... 으로부터
\(8\times {4\choose 1}=32\)
- \(r_4(4)=24\)
\((\pm1)^2+(\pm1)^2+(\pm1)^2+(\pm1)^2=(\pm2)^2+0^2+0^2+0^2=4\)
... 으로부터
\(16+2 \times {4\choose 1}=24\)
모듈라 형식을 이용한 증명
\(\theta^4(q)=(\sum_{n=-\infty}^\infty q^{n^2})^4=(1+2\sum_{n=1}^\infty q^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)q^n\) 이라 두자.
한편, 데데킨트 에타함수 표현으로부터 다음을 얻는다. (자코비 세타함수의 해당부분 참조)
\(\theta^4(\tau)=\frac{\eta(\tau)^{20}}{\eta(2\tau)^{8}\eta(\frac{\tau}{2})^{8}}\)
적당한 상수 \(c\)에 대하여 다음 등식이 성립한다.
\(\frac{d}{d\tau}\log \frac{\eta(2\tau)}{\eta(\frac{\tau}{2})}=c\frac{\eta(\tau)^{20}}{\eta(2\tau)^{8}\eta(\frac{\tau}{2})^{8}}=c\theta^4(\tau)\)
\(\frac{d}{d\tau}\log \frac{\eta(2\tau)}{\eta(\frac{\tau}{2})}=c\frac{\eta(\tau)^{20}}{\eta(2\tau)^{8}\eta(\frac{\tau}{2})^{8}}=c\theta^4(\tau)\)
증명
\(\theta^4(q)=(\sum_{n=-\infty}^\infty q^{n^2})^4=(1+2\sum_{n=1}^\infty q^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)q^n\)
\(A(q)=\sum_{m=1}^{\infty}\frac{mq^m}{1-q^m}=\sum_{m=1}^{\infty}{mq^m}(1+q^m+q^{2m}+\cdots)=\sum_{n=1}^{\infty}\sigma(n)q^n\)
여기서 \(\sigma(n)\) 에 대해서는 자연수의 약수의 합 항목 참조.
\(B(q)=\sum_{m=1}^{\infty}\frac{(1+(-1)^m)}{2}\cdot \frac{2mq^{2m}}{1-q^{2m}}=\sum_{m=1}^{\infty}\frac{(1+(-1)^m)}{2}\cdot{2mq^{2m}}(1+q^{2m}+q^{4m}+\cdots)=\sum_{m=1,n=1}^{\infty}m(1+(-1)^m){q^{2mn}}= \sum_{n=1}^{\infty}(\sum_{d|n,4|d}d)q^n\)
\(\theta^4(q)=1+8A(q)-8B(q)\) 를 증명하면, 된다.
재미있는 사실
역사
메모
자코비 세타함수의 삼중곱 정리로부터, 다음을 얻는다.
\(\theta(\tau)=\sum_{n=-\infty}^\infty x^{n^2}=\prod_{m=1}^\infty \left( 1 - x^{2m}\right) \left( 1 + x^{2m-1}\right) \left( 1 + x^{2m-1}\right)\)
여기서 \(x=e^{\pi i \tau}\).
관련된 항목들
- 라그랑지의 네 제곱수 정리
[[라그랑지의 네 제곱수 정리|]][[아이젠슈타인 급수(Eisenstein series)|]] - 아이젠슈타인 급수(Eisenstein series)
- 자연수의 약수의 합
- 자코비 세타함수
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)