"자코비의 네 제곱수 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
18번째 줄: 18번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">세타함수</h5>
 
<h5 style="margin: 0px; line-height: 2em;">세타함수</h5>
  
* <math>\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}</math>, <math>q=e^{2\pi i \tau}</math><br>
+
* 네 제곱수의 합으로 표현하는 방법의 수에 대한 생성함수로서 세타함수를 사용<br>
* <math>x=e^{\pi i \tau}</math> 로 두면,<br><math>\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}=1+2\sum_{n=1}^\infty x^{n^2}</math><br><math>\theta^4(x)=(\sum_{n=-\infty}^\infty x^{n^2})^4=(1+2\sum_{n=1}^\infty x^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)x^n</math><br> 여기서 <math>r_4(n)</math> 는 <math>x_1^2+x_2^2+x_3^2+x_4^2=n</math>의 정수해 <math>(x_1,x_2,x_3,x_4)</math>의 개수, 즉 자연수 <math>n</math>을 네 정수의 제곱의 합으로 쓰는 방법의 수<br>
+
* [[자코비 세타함수]]<br><math>\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}</math>, <math>q=e^{2\pi i \tau}</math><br><math>x=e^{\pi i \tau}</math> 로 두면,<br><math>\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}=1+2\sum_{n=1}^\infty x^{n^2}</math><br>
 +
*  세타함수의 네 제곱을 취하면 자연수를 네 제곱으로 표현하는 방법에 대한 [[생성함수]]를 얻는다<br><math>\theta^4(x)=(\sum_{n=-\infty}^\infty x^{n^2})^4=(1+2\sum_{n=1}^\infty x^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)x^n</math><br> 여기서 <math>r_4(n)</math> 는 <math>x_1^2+x_2^2+x_3^2+x_4^2=n</math>의 정수해 <math>(x_1,x_2,x_3,x_4)</math>의 개수, 즉 자연수 <math>n</math>을 네 정수의 제곱의 합으로 쓰는 방법의 수<br>
  
 
 
 
 
55번째 줄: 56번째 줄:
 
<math>\theta^4(q)=(\sum_{n=-\infty}^\infty q^{n^2})^4=(1+2\sum_{n=1}^\infty q^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)q^n</math> 이라 두자. 
 
<math>\theta^4(q)=(\sum_{n=-\infty}^\infty q^{n^2})^4=(1+2\sum_{n=1}^\infty q^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)q^n</math> 이라 두자. 
  
한편, 세타함수의 [[데데킨트 에타함수]] 표현으로부터 다음을 얻는다. ([[자코비 세타함수]]의 해당부분 참조)
+
한편, 세타함수의 [[데데킨트 에타함수]] 표현을 이용하자. ([[자코비 세타함수]]의 해당부분 참조)
 +
 
 +
<math>\theta(\tau)=\frac{\eta(\tau)^5}{\eta(2\tau)^2\eta(\frac{\tau}{2})^2}</math>
  
 
<math>\theta^4(\tau)=\frac{\eta(\tau)^{20}}{\eta(2\tau)^{8}\eta(\frac{\tau}{2})^{8}}</math>
 
<math>\theta^4(\tau)=\frac{\eta(\tau)^{20}}{\eta(2\tau)^{8}\eta(\frac{\tau}{2})^{8}}</math>
89번째 줄: 92번째 줄:
 
<math>B(q)=\sum_{m=1}^{\infty}\frac{(1+(-1)^m)}{2}\cdot \frac{2mq^{2m}}{1-q^{2m}}=\sum_{m=1}^{\infty}\frac{(1+(-1)^m)}{2}\cdot{2mq^{2m}}(1+q^{2m}+q^{4m}+\cdots)=\sum_{m=1,n=1}^{\infty}m(1+(-1)^m){q^{2mn}}= \sum_{n=1}^{\infty}(\sum_{d|n,4|d}d)q^n</math>
 
<math>B(q)=\sum_{m=1}^{\infty}\frac{(1+(-1)^m)}{2}\cdot \frac{2mq^{2m}}{1-q^{2m}}=\sum_{m=1}^{\infty}\frac{(1+(-1)^m)}{2}\cdot{2mq^{2m}}(1+q^{2m}+q^{4m}+\cdots)=\sum_{m=1,n=1}^{\infty}m(1+(-1)^m){q^{2mn}}= \sum_{n=1}^{\infty}(\sum_{d|n,4|d}d)q^n</math>
  
<math>\theta^4(q)=1+8A(q)-8B(q)</math> 를 증명하면, 된다
+
<math>\theta^4(q)=1+8A(q)-8B(q)</math> 를 증명하면 된다
  
 
 
 
 

2010년 2월 19일 (금) 08:28 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 라그랑지의 네 제곱수 정리는 모든 자연수는 네 개의 제곱수의 합으로 표현가능함을 말해준다
  • 자코비는 세타함수 를 이용하여 주어진 자연수가  네 개의 제곱수의 합으로 얼마나 많은 방법으로 표현가능한지의 문제를 해결

 

 

세타함수
  • 네 제곱수의 합으로 표현하는 방법의 수에 대한 생성함수로서 세타함수를 사용
  • 자코비 세타함수
    \(\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}\), \(q=e^{2\pi i \tau}\)
    \(x=e^{\pi i \tau}\) 로 두면,
    \(\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}=1+2\sum_{n=1}^\infty x^{n^2}\)
  • 세타함수의 네 제곱을 취하면 자연수를 네 제곱으로 표현하는 방법에 대한 생성함수를 얻는다
    \(\theta^4(x)=(\sum_{n=-\infty}^\infty x^{n^2})^4=(1+2\sum_{n=1}^\infty x^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)x^n\)
    여기서 \(r_4(n)\) 는 \(x_1^2+x_2^2+x_3^2+x_4^2=n\)의 정수해 \((x_1,x_2,x_3,x_4)\)의 개수, 즉 자연수 \(n\)을 네 정수의 제곱의 합으로 쓰는 방법의 수

 

 

정리

(정리) 자코비의 네제곱수 정리

\(r_4(n)=8\sum_{m|n,4\nmid m}m\)

 

 

  • \(r_4(1)=8\)
    \((\pm1)^2+0^2+0^2+0^2=1\)이므로 
    \(2\times {4\choose 1}=8\)
  • \(r_4(2)=24\)
    \((\pm1)^2+(\pm1)^2+0^2+0^2=2\)
    ... 으로부터
    \(4\times {4\choose 2}=24\)
  • \(r_4(3)=32\)
    \((\pm1)^2+(\pm1)^2+(\pm1)^2+0^2=3\)
     
    ... 으로부터
    \(8\times {4\choose 1}=32\)

 

  • \(r_4(4)=24\)
    \((\pm1)^2+(\pm1)^2+(\pm1)^2+(\pm1)^2=(\pm2)^2+0^2+0^2+0^2=4\)
    ... 으로부터
    \(16+2 \times {4\choose 1}=24\)

 

 

 

모듈라 형식을 이용한 증명

\(\theta^4(q)=(\sum_{n=-\infty}^\infty q^{n^2})^4=(1+2\sum_{n=1}^\infty q^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)q^n\) 이라 두자. 

한편, 세타함수의 데데킨트 에타함수 표현을 이용하자. (자코비 세타함수의 해당부분 참조)

\(\theta(\tau)=\frac{\eta(\tau)^5}{\eta(2\tau)^2\eta(\frac{\tau}{2})^2}\)

\(\theta^4(\tau)=\frac{\eta(\tau)^{20}}{\eta(2\tau)^{8}\eta(\frac{\tau}{2})^{8}}\)

적당한 상수 \(c\)에 대하여 다음 등식이 성립한다. 

\(\frac{d}{d\tau}\log \frac{\eta(2\tau)}{\eta(\frac{\tau}{2})}=c\frac{\eta(\tau)^{20}}{\eta(2\tau)^{8}\eta(\frac{\tau}{2})^{8}}=c\theta^4(\tau)\)

 

이제

\(\frac{\eta(2\tau)^8}{\eta(\frac{\tau}{2})^8}=x\prod_{n=1}^{\infty}\frac{(1-x^{4n})^8}{(1-x^{n})^8}\)에  로그미분 \(\frac{d}{d\tau}\log\)을 취하면, 

\(1+8\sum_{n=1}^{\infty}\frac{nx^n}{1-x^n}-8\sum_{n=1}^{\infty}\frac{4nx^{4n}}{1-x^{4n}}=1+\sum_{n=1}^{\infty}(\sum_{d|n,4|d}d)q^n\)를 얻는다. 

따라서 \(r_4(n)=\sum_{d|n,4|d}d\) ■

 

 

 

타원함수론을 이용한 증명

\(\theta^4(q)=(\sum_{n=-\infty}^\infty q^{n^2})^4=(1+2\sum_{n=1}^\infty q^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)q^n\)

\(A(q)=\sum_{m=1}^{\infty}\frac{mq^m}{1-q^m}=\sum_{m=1}^{\infty}{mq^m}(1+q^m+q^{2m}+\cdots)=\sum_{n=1}^{\infty}\sigma(n)q^n\)

여기서 \(\sigma(n)\) 에 대해서는 자연수의 약수의 합 항목 참조.

\(B(q)=\sum_{m=1}^{\infty}\frac{(1+(-1)^m)}{2}\cdot \frac{2mq^{2m}}{1-q^{2m}}=\sum_{m=1}^{\infty}\frac{(1+(-1)^m)}{2}\cdot{2mq^{2m}}(1+q^{2m}+q^{4m}+\cdots)=\sum_{m=1,n=1}^{\infty}m(1+(-1)^m){q^{2mn}}= \sum_{n=1}^{\infty}(\sum_{d|n,4|d}d)q^n\)

\(\theta^4(q)=1+8A(q)-8B(q)\) 를 증명하면 된다. 

 

 

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

자코비 세타함수의 삼중곱 정리로부터, 다음을 얻는다.

 

\(\theta(\tau)=\sum_{n=-\infty}^\infty x^{n^2}=\prod_{m=1}^\infty \left( 1 - x^{2m}\right) \left( 1 + x^{2m-1}\right) \left( 1 + x^{2m-1}\right)\)

여기서 \(x=e^{\pi i \tau}\).

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그