"자코비의 네 제곱수 정리"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
개요==
세타함수==
예==
관련논문==
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
|||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소== |
* [[자코비의 네 제곱수 정리]]<br> | * [[자코비의 네 제곱수 정리]]<br> | ||
7번째 줄: | 7번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요== |
* [[라그랑지의 네 제곱수 정리]]는 모든 자연수는 네 개의 제곱수의 합으로 표현가능함을 말해준다<br> | * [[라그랑지의 네 제곱수 정리]]는 모든 자연수는 네 개의 제곱수의 합으로 표현가능함을 말해준다<br> | ||
16번째 줄: | 16번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">세타함수 | + | <h5 style="margin: 0px; line-height: 2em;">세타함수== |
* 네 제곱수의 합으로 표현하는 방법의 수에 대한 생성함수로서 세타함수를 사용<br> | * 네 제곱수의 합으로 표현하는 방법의 수에 대한 생성함수로서 세타함수를 사용<br> | ||
26번째 줄: | 26번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">정리 | + | <h5 style="margin: 0px; line-height: 2em;">정리== |
(정리) [[자코비의 네 제곱수 정리|자코비의 네제곱수 정리]] | (정리) [[자코비의 네 제곱수 정리|자코비의 네제곱수 정리]] | ||
36번째 줄: | 36번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">예 | + | <h5 style="margin: 0px; line-height: 2em;">예== |
* <math>r_4(1)=8</math><br><math>(\pm1)^2+0^2+0^2+0^2=1</math>이므로 <br><math>2\times {4\choose 1}=8</math><br> | * <math>r_4(1)=8</math><br><math>(\pm1)^2+0^2+0^2+0^2=1</math>이므로 <br><math>2\times {4\choose 1}=8</math><br> | ||
50번째 줄: | 50번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">모듈라 형식을 이용한 증명 | + | <h5 style="margin: 0px; line-height: 2em;">모듈라 형식을 이용한 증명== |
아래에서 <math>q=e^{2\pi i \tau}</math>, <math>x=e^{\pi i \tau}</math> 이다. | 아래에서 <math>q=e^{2\pi i \tau}</math>, <math>x=e^{\pi i \tau}</math> 이다. | ||
86번째 줄: | 86번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">타원함수론을 이용한 증명 | + | <h5 style="margin: 0px; line-height: 2em;">타원함수론을 이용한 증명== |
<math>\theta^4(q)=(\sum_{n=-\infty}^\infty q^{n^2})^4=(1+2\sum_{n=1}^\infty q^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)q^n</math> | <math>\theta^4(q)=(\sum_{n=-\infty}^\infty q^{n^2})^4=(1+2\sum_{n=1}^\infty q^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)q^n</math> | ||
106번째 줄: | 106번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실== |
116번째 줄: | 116번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사== |
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
124번째 줄: | 124번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모== |
138번째 줄: | 138번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들== |
− | * [[라그랑지의 네 제곱수 정리]]<br>[[라그랑지의 네 제곱수 정리|]][[아이젠슈타인 급수(Eisenstein series)|]]<br> | + | * [[라그랑지의 네 제곱수 정리]]<br>[[라그랑지의 네 제곱수 정리|라그랑지의 네 제곱수 정리]][[아이젠슈타인 급수(Eisenstein series)|아이젠슈타인 급수]]<br> |
* [[아이젠슈타인 급수(Eisenstein series)]]<br> | * [[아이젠슈타인 급수(Eisenstein series)]]<br> | ||
* [[자연수의 약수의 합]]<br> | * [[자연수의 약수의 합]]<br> | ||
149번째 줄: | 149번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역== |
* http://www.google.com/dictionary?langpair=en|ko&q= | * http://www.google.com/dictionary?langpair=en|ko&q= | ||
160번째 줄: | 160번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
173번째 줄: | 173번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문== |
* <br> | * <br> | ||
184번째 줄: | 184번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서== |
* 도서내검색<br> | * 도서내검색<br> | ||
198번째 줄: | 198번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사== |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
209번째 줄: | 209번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그== |
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= |
2012년 11월 1일 (목) 12:59 판
이 항목의 스프링노트 원문주소==
개요==
- 라그랑지의 네 제곱수 정리는 모든 자연수는 네 개의 제곱수의 합으로 표현가능함을 말해준다
- 자코비는 세타함수 를 이용하여 주어진 자연수가 네 개의 제곱수의 합으로 얼마나 많은 방법으로 표현가능한지의 문제를 해결
세타함수==
- 네 제곱수의 합으로 표현하는 방법의 수에 대한 생성함수로서 세타함수를 사용
- 자코비 세타함수
\(\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}\), \(q=e^{2\pi i \tau}\)
\(x=e^{\pi i \tau}\) 로 두면,
\(\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}=1+2\sum_{n=1}^\infty x^{n^2}\)
- 세타함수의 네 제곱을 취하면 자연수를 네 제곱으로 표현하는 방법에 대한 생성함수를 얻는다
\(\theta^4(x)=(\sum_{n=-\infty}^\infty x^{n^2})^4=(1+2\sum_{n=1}^\infty x^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)x^n\)
여기서 \(r_4(n)\) 는 \(x_1^2+x_2^2+x_3^2+x_4^2=n\)의 정수해 \((x_1,x_2,x_3,x_4)\)의 개수, 즉 자연수 \(n\)을 네 정수의 제곱의 합으로 쓰는 방법의 수
\(\theta(\tau)=\theta_3(\tau)=\sum_{n=-\infty}^\infty q^{n^2/2}= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}\), \(q=e^{2\pi i \tau}\)
\(x=e^{\pi i \tau}\) 로 두면,
\(\theta(x)=\sum_{n=-\infty}^\infty x^{n^2}=1+2\sum_{n=1}^\infty x^{n^2}\)
\(\theta^4(x)=(\sum_{n=-\infty}^\infty x^{n^2})^4=(1+2\sum_{n=1}^\infty x^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)x^n\)
여기서 \(r_4(n)\) 는 \(x_1^2+x_2^2+x_3^2+x_4^2=n\)의 정수해 \((x_1,x_2,x_3,x_4)\)의 개수, 즉 자연수 \(n\)을 네 정수의 제곱의 합으로 쓰는 방법의 수
정리== (정리) 자코비의 네제곱수 정리 \(r_4(n)=8\sum_{m|n,4\nmid m}m\)
예==
- \(r_4(1)=8\)
\((\pm1)^2+0^2+0^2+0^2=1\)이므로
\(2\times {4\choose 1}=8\)
- \(r_4(2)=24\)
\((\pm1)^2+(\pm1)^2+0^2+0^2=2\)
... 으로부터
\(4\times {4\choose 2}=24\)
- \(r_4(3)=32\)
\((\pm1)^2+(\pm1)^2+(\pm1)^2+0^2=3\)
... 으로부터
\(8\times {4\choose 1}=32\)
- \(r_4(4)=24\)
\((\pm1)^2+(\pm1)^2+(\pm1)^2+(\pm1)^2=(\pm2)^2+0^2+0^2+0^2=4\)
... 으로부터
\(16+2 \times {4\choose 1}=24\)
\((\pm1)^2+0^2+0^2+0^2=1\)이므로
\(2\times {4\choose 1}=8\)
\((\pm1)^2+(\pm1)^2+0^2+0^2=2\)
... 으로부터
\(4\times {4\choose 2}=24\)
\((\pm1)^2+(\pm1)^2+(\pm1)^2+0^2=3\)
... 으로부터
\(8\times {4\choose 1}=32\)
\((\pm1)^2+(\pm1)^2+(\pm1)^2+(\pm1)^2=(\pm2)^2+0^2+0^2+0^2=4\)
... 으로부터
\(16+2 \times {4\choose 1}=24\)
모듈라 형식을 이용한 증명== 아래에서 \(q=e^{2\pi i \tau}\), \(x=e^{\pi i \tau}\) 이다. \(\theta^4(x)=(\sum_{n=-\infty}^\infty x^{n^2})^4=(1+2\sum_{n=1}^\infty x^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)x^n\) 이라 두자. 세타함수의 데데킨트 에타함수 표현을 이용하자. (자코비 세타함수의 해당부분 참조) \(\theta(\tau)=\frac{\eta(\tau)^5}{\eta(2\tau)^2\eta(\frac{\tau}{2})^2}\) \(\theta^4(\tau)=\frac{\eta(\tau)^{20}}{\eta(2\tau)^{8}\eta(\frac{\tau}{2})^{8}}\) \(\theta^4(\tau)\)는 군 \(\Gamma(2)\)에 대한 weight 2인 모듈라 형식(modular forms)이다. 한편 \(\frac{\eta(2\tau)^8}{\eta(\frac{\tau}{2})^8}\)는 \(\Gamma(2)\)에 대한 모듈라 함수이다. 적당한 상수 \(c\)에 대하여 다음 등식이 성립한다. \(\frac{d}{d\tau}\log \frac{\eta(2\tau)}{\eta(\frac{\tau}{2})}=c\frac{\eta(\tau)^{20}}{\eta(2\tau)^{8}\eta(\frac{\tau}{2})^{8}}=c\theta^4(\tau)\) 이제 \(\frac{\eta(2\tau)^8}{\eta(\frac{\tau}{2})^8}=x\prod_{n=1}^{\infty}\frac{(1-x^{4n})^8}{(1-x^{n})^8}\)에 미분연산자 \(x\frac{d}{dx}\log\)(즉 로그를 취한뒤, 미분 후, x 곱하기) 을 취하면, \(1+8\sum_{n=1}^{\infty}\frac{nx^n}{1-x^n}-8\sum_{n=1}^{\infty}\frac{4nx^{4n}}{1-x^{4n}}=1+8\sum_{n=1}^{\infty}(\sum_{d|n,4\nmid d}d)q^n\)를 얻는다. 따라서 \(r_4(n)=\sum_{d|n,4\nmid d}d\)■
타원함수론을 이용한 증명== \(\theta^4(q)=(\sum_{n=-\infty}^\infty q^{n^2})^4=(1+2\sum_{n=1}^\infty q^{n^2})^4=1+\sum_{n=1}^\infty r_4(n)q^n\) \(A(q)=\sum_{m=1}^{\infty}\frac{mq^m}{1-q^m}=\sum_{m=1}^{\infty}{mq^m}(1+q^m+q^{2m}+\cdots)=\sum_{n=1}^{\infty}\sigma(n)q^n\) 여기서 \(\sigma(n)\) 에 대해서는 자연수의 약수의 합 항목 참조. \(B(q)=\sum_{m=1}^{\infty}\frac{(1+(-1)^m)}{2}\cdot \frac{2mq^{2m}}{1-q^{2m}}=\sum_{m=1}^{\infty}\frac{(1+(-1)^m)}{2}\cdot{2mq^{2m}}(1+q^{2m}+q^{4m}+\cdots)=\sum_{m=1,n=1}^{\infty}m(1+(-1)^m){q^{2mn}}= \sum_{n=1}^{\infty}(\sum_{d|n,4|d}d)q^n\) \(\theta^4(q)=1+8A(q)-8B(q)\) 를 증명하면 된다.
재미있는 사실==
역사==
메모== 자코비 세타함수의 삼중곱 정리로부터, 다음을 얻는다. \(\theta(\tau)=\sum_{n=-\infty}^\infty x^{n^2}=\prod_{m=1}^\infty \left( 1 - x^{2m}\right) \left( 1 + x^{2m-1}\right) \left( 1 + x^{2m-1}\right)\) 여기서 \(x=e^{\pi i \tau}\).
관련된 항목들==
수학용어번역==
사전 형태의 자료==
관련논문==
-
- A Simple Derivation of Jacobi's Four-Square Formula
- John A. Ewell, Proceedings of the American Mathematical Society, Vol. 85, No. 3 (Jul., 1982), pp. 323-326
- http://www.jstor.org/action/doBasicSearch?Query=jacobi
- http://www.jstor.org/action/doBasicSearch?Query=
- http://dx.doi.org/
- John A. Ewell, Proceedings of the American Mathematical Society, Vol. 85, No. 3 (Jul., 1982), pp. 323-326