"정수에서의 리만제타함수의 값"의 두 판 사이의 차이
7번째 줄: | 7번째 줄: | ||
− | <h5 style=" | + | <h5 style="margin: 0px; line-height: 2em;">증명</h5> |
<math>\zeta(4)</math> 를 구하는 방법을 통해서 일반적인 경우의 증명도 알 수 있다. <math>\oint_{C_{R}}\frac{\pi\cot(\pi z)}{z^{4}}dz</math> | <math>\zeta(4)</math> 를 구하는 방법을 통해서 일반적인 경우의 증명도 알 수 있다. <math>\oint_{C_{R}}\frac{\pi\cot(\pi z)}{z^{4}}dz</math> | ||
27번째 줄: | 27번째 줄: | ||
− | 그러므로 모든 유수의 합은 <math>-\frac{\pi^4}{45}+2\sum_{k=1}^{\infty}\frac{1}{k^{4}}=0</math | + | 그러므로 모든 유수의 합은 <math>-\frac{\pi^4}{45}+2\sum_{k=1}^{\infty}\frac{1}{k^{4}}=0</math>따라서 <math>\zeta(4)=\frac{\pi^4}{90}</math> |
일반적인 자연수 <math>n</math> 에 대하여도 마찬가지 방법으로 | 일반적인 자연수 <math>n</math> 에 대하여도 마찬가지 방법으로 | ||
36번째 줄: | 36번째 줄: | ||
을 얻는다. | 을 얻는다. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
51번째 줄: | 43번째 줄: | ||
− | = | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">상위 주제</h5> |
− | * [[ | + | * [[리만제타함수]]<br> |
− | ** [[ | + | ** [[두자연수가 서로소일 확률과 리만제타함수]]<br> |
+ | ** [[리만가설]]<br> | ||
+ | ** [[모든 자연수의 곱과 리만제타함수]]<br> | ||
+ | ** [[모든 자연수의 합과 리만제타함수]]<br> | ||
+ | ** [[소수와 리만제타함수]]<br> | ||
+ | ** [[3792297|슈테판-볼츠만 법칙과 리만제타함수의 값]]<br> | ||
+ | ** [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]<br> | ||
+ | ** [[정수에서의 리만제타함수의 값]]<br> | ||
60번째 줄: | 59번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5> |
66번째 줄: | 65번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5> |
* [[수학사연표 (역사)|수학사연표]]<br> <br> | * [[수학사연표 (역사)|수학사연표]]<br> <br> | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">많이 나오는 질문과 답변</h5> |
* 네이버 지식인<br> | * 네이버 지식인<br> | ||
81번째 줄: | 80번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 고교수학 또는 대학수학</h5> |
87번째 줄: | 86번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 다른 주제들</h5> |
* [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]<br> | * [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]<br> | ||
96번째 줄: | 95번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5> |
* 도서내검색<br> | * 도서내검색<br> | ||
107번째 줄: | 106번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">참고할만한 자료</h5> |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
114번째 줄: | 113번째 줄: | ||
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=residue | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=residue | ||
− | ** [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid= | + | ** [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] |
* [http://navercast.naver.com/science/list 네이버 오늘의과학] | * [http://navercast.naver.com/science/list 네이버 오늘의과학] | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5> |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
132번째 줄: | 131번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5> |
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | ||
141번째 줄: | 140번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이미지 검색</h5> |
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search= | * http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search= | ||
149번째 줄: | 148번째 줄: | ||
− | <h5 style="line-height: 3.428em | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">동영상</h5> |
* http://www.youtube.com/results?search_type=&search_query= | * http://www.youtube.com/results?search_type=&search_query= |
2009년 11월 15일 (일) 05:43 판
간단한 소개
- 홀수인 자연수를 제외한 모든 정수에 대하여 리만제타함수의 값은 닫힌 형태로 알려져 있음.
\(\zeta(2n) =(-1)^{n+1}\frac{B_{2n}(2\pi)^{2n}}{2(2n)!}, n \ge 1\)여기서 \(B_{2n}\)은 베르누이수.
\(\zeta(-n)=-\frac{B_{n+1}}{n+1}, n \ge 1\)
\(\zeta(0)=-\frac{1}{2}\)
증명
\(\zeta(4)\) 를 구하는 방법을 통해서 일반적인 경우의 증명도 알 수 있다. \(\oint_{C_{R}}\frac{\pi\cot(\pi z)}{z^{4}}dz\)
\(C_{R}\)는 원점을 중심으로 반지금이\(R\) 인 원
이때 \(R\)이 커지면, 적분은 0으로 수렴한다.
유수정리를 사용하자.
0이 아닌 정수 \(k\)에 대하여 \(z\approx k\) 이면, \(\pi \cot \pi z \approx \frac{1}{z-k}\)
한편\(\frac{\pi\cot(\pi z)}{z^{4}}\)의 0이 아닌 정수 \(k\)에서의 유수(residue)는 \(\frac{1}{k^{4}}\)로 주어진다.
\(\cot x = \frac {1} {x} - \frac {x}{3} - \frac {x^3} {45} - \frac {2 x^5} {945} - \cdots = \sum_{n=0}^\infty \frac{(-1)^n 2^{2n} B_{2n} x^{2n-1}}{(2n)!}\)(코탄젠트 참조)
를 이용하면 0 에서의 유수는 \(-\pi^{4}/45\) 임을 알 수 있다.
그러므로 모든 유수의 합은 \(-\frac{\pi^4}{45}+2\sum_{k=1}^{\infty}\frac{1}{k^{4}}=0\)따라서 \(\zeta(4)=\frac{\pi^4}{90}\)
일반적인 자연수 \(n\) 에 대하여도 마찬가지 방법으로
\(2\zeta(2n)+\frac{(-1)^n 2^{2n}B_{2n}\pi^{2n}}{(2n)!}=0\)
\(\zeta(2n) =(-1)^{n+1}\frac{B_{2n}(2\pi)^{2n}}{2(2n)!}, n \ge 1\)
을 얻는다.
상위 주제
재미있는 사실
역사
많이 나오는 질문과 답변
- 네이버 지식인
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
- http://kin.search.naver.com/search.naver?where=kin_qna&query=
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
참고할만한 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- 대한수학회 수학 학술 용어집
- 네이버 오늘의과학
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 네이버 블로그 검색 http://cafeblog.search.naver.com/search.naver?where=post&sm=tab_jum&query=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
- 스프링노트 http://www.springnote.com/search?stype=all&q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com