"중심이항계수 (central binomial coefficient)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">이 항목의 스프링노트 원문주소</h5>
  
 
* [[중심이항계수(central binomial coefficient)]]<br>
 
* [[중심이항계수(central binomial coefficient)]]<br>
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">개요</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">개요</h5>
  
 
*  다음과 같은 [[이항계수와 조합|이항계수]]로 정의<br>'''<math>{2n \choose n}=\frac{(2n)!}{(n!)^2}</math>'''<br>
 
*  다음과 같은 [[이항계수와 조합|이항계수]]로 정의<br>'''<math>{2n \choose n}=\frac{(2n)!}{(n!)^2}</math>'''<br>
18번째 줄: 18번째 줄:
 
 
 
 
  
<h5 style="MARGIN: 0px; LINE-HEIGHT: 2em;">급수와 중심이항계수</h5>
+
<h5 style="margin: 0px; line-height: 2em;">중심이항계수의 근사식</h5>
 +
 
 +
* http://planetmath.org/encyclopedia/AsymptoticsOfCentralBinomialCoefficient.html<br>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5 style="margin: 0px; line-height: 2em;">급수와 중심이항계수</h5>
  
 
* [[이항급수와 이항정리]]<br><math>\frac{1}{\sqrt{1-4z}}=\sum_{n=0}^{\infty} {{2n}\choose {n}} z^n</math><br>
 
* [[이항급수와 이항정리]]<br><math>\frac{1}{\sqrt{1-4z}}=\sum_{n=0}^{\infty} {{2n}\choose {n}} z^n</math><br>
30번째 줄: 40번째 줄:
 
 
 
 
  
<h5 style="MARGIN: 0px; LINE-HEIGHT: 2em;"> 중심이항계수가 나타나는 급수</h5>
+
<h5 style="margin: 0px; line-height: 2em;"> 중심이항계수가 나타나는 급수</h5>
  
 
* '''[Lehmer1985]''' 참조<br>
 
* '''[Lehmer1985]''' 참조<br>
58번째 줄: 68번째 줄:
 
<math>\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=\frac{2\pi}{3}\operatorname{Cl}_2(\frac{\pi}{3})-\frac{4}{3}\zeta(3)=\pi\operatorname{Cl}_2(\frac{2\pi}{3})-\frac{4}{3}\zeta(3)=\frac{\pi\sqrt{3}}{18}(\psi^{(1)}(\frac{1}{3})-\psi^{(1)}(\frac{2}{3}))-\frac{4}{3}\zeta(3)</math>
 
<math>\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=\frac{2\pi}{3}\operatorname{Cl}_2(\frac{\pi}{3})-\frac{4}{3}\zeta(3)=\pi\operatorname{Cl}_2(\frac{2\pi}{3})-\frac{4}{3}\zeta(3)=\frac{\pi\sqrt{3}}{18}(\psi^{(1)}(\frac{1}{3})-\psi^{(1)}(\frac{2}{3}))-\frac{4}{3}\zeta(3)</math>
  
여기서 <math>\psi^{(1)}</math>는 [[트리감마 함수(trigamma function)]].
+
여기서 <math>\operatorname{Cl}_2(\theta)</math> 는 [[로바체프스키 함수|로바체프스키와 클라우센 함수]], <math>\psi^{(1)}</math>는 [[트리감마 함수(trigamma function)]].
  
 
(증명)
 
(증명)
  
http://www.research.att.com/~njas/sequences/A145438
+
[http://www.research.att.com/%7Enjas/sequences/A145438 http://www.research.att.com/~njas/sequences/A145438]
  
 
<math>\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=4\int_{0}^{\frac{1}{2}}(\arcsin x)^2}\frac{dx}{x}=-2\int_{0}^{\pi/3}x\log(2\sin \frac{x}{2})\,dx</math>
 
<math>\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=4\int_{0}^{\frac{1}{2}}(\arcsin x)^2}\frac{dx}{x}=-2\int_{0}^{\pi/3}x\log(2\sin \frac{x}{2})\,dx</math>
  
http://www.wolframalpha.com/input/?i=integrate+(arcsin+x)^2/x+dx+from+x%3D0+to+1/2
+
[http://www.wolframalpha.com/input/?i=integrate+%28arcsin+x%29%5E2/x+dx+from+x%3D0+to+1/2 http://www.wolframalpha.com/input/?i=integrate+(arcsin+x)^2/x+dx+from+x%3D0+to+1/2]
  
 
 
 
 
72번째 줄: 82번째 줄:
 
좌변 http://www.wolframalpha.com/input/?i=sum+1%2F%28m%5E3*binom%282m%2Cm%29%29+from+1+to+infinity
 
좌변 http://www.wolframalpha.com/input/?i=sum+1%2F%28m%5E3*binom%282m%2Cm%29%29+from+1+to+infinity
  
우변 http://www.wolframalpha.com/input/?i=-4*zeta(3)/3%2Bpi*sqrt(3)*(trigamma(1/3)-trigamma(2/3))/18
+
우변 [http://www.wolframalpha.com/input/?i=-4*zeta%283%29/3%2Bpi*sqrt%283%29*%28trigamma%281/3%29-trigamma%282/3%29%29/18 http://www.wolframalpha.com/input/?i=-4*zeta(3)/3%2Bpi*sqrt(3)*(trigamma(1/3)-trigamma(2/3))/18]
  
 
 
118번째 줄: 128번째 줄:
 
 
 
 
  
<h5 style="MARGIN: 0px; LINE-HEIGHT: 2em;">원주율의 유리수 근사와 중심이항계수</h5>
+
<h5 style="margin: 0px; line-height: 2em;">원주율의 유리수 근사와 중심이항계수</h5>
  
 
 <math>\sum_{n=1}^{\infty}\frac{2^{n}}{\binom{2n}{n}}=\frac{\pi}{2}+1</math>
 
 <math>\sum_{n=1}^{\infty}\frac{2^{n}}{\binom{2n}{n}}=\frac{\pi}{2}+1</math>
138번째 줄: 148번째 줄:
 
 http://www.wolframalpha.com/input/?i=sum+1%2F%28m%5E3*binom%282m%2Cm%29%29+from+1+to+infinity
 
 http://www.wolframalpha.com/input/?i=sum+1%2F%28m%5E3*binom%282m%2Cm%29%29+from+1+to+infinity
  
http://www.wolframalpha.com/input/?i=sum+m^6*2^m/(binom(2m,m))+from+1+to+infinity
+
[http://www.wolframalpha.com/input/?i=sum+m%5E6*2%5Em/%28binom%282m,m%29%29+from+1+to+infinity http://www.wolframalpha.com/input/?i=sum+m^6*2^m/(binom(2m,m))+from+1+to+infinity]
  
 
일반적으로 <math>k\in\mathbb{N}</math>에 대하여,
 
일반적으로 <math>k\in\mathbb{N}</math>에 대하여,
150번째 줄: 160번째 줄:
 
 
 
 
  
<h5 style="MARGIN: 0px; LINE-HEIGHT: 2em;">리만제타함수</h5>
+
<h5 style="margin: 0px; line-height: 2em;">리만제타함수</h5>
  
 
<math>\zeta(2)=3\sum_{n=1}^{\infty}\frac{1}{n^{2}\binom{2n}{n}}</math>
 
<math>\zeta(2)=3\sum_{n=1}^{\infty}\frac{1}{n^{2}\binom{2n}{n}}</math>
162번째 줄: 172번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">재미있는 사실</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">재미있는 사실</h5>
  
 
 
 
 
173번째 줄: 183번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">역사</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">역사</h5>
  
 
 
 
 
185번째 줄: 195번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">메모</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">메모</h5>
  
 
'''[Lehmer1985]'''
 
'''[Lehmer1985]'''
203번째 줄: 213번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">관련된 항목들</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련된 항목들</h5>
  
 
* [[카탈란 수열(Catalan numbers)]]<br>
 
* [[카탈란 수열(Catalan numbers)]]<br>
214번째 줄: 224번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">수학용어번역</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">수학용어번역</h5>
  
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
227번째 줄: 237번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">사전 형태의 자료</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">사전 형태의 자료</h5>
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
235번째 줄: 245번째 줄:
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
+
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=
  
242번째 줄: 252번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">관련논문</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련논문</h5>
  
 
* [http://escholarship.org/uc/item/7wd7j9nz Experimental Determination of Apéry-like Identities&nbsp;for ζ(2n + 2)]<br>
 
* [http://escholarship.org/uc/item/7wd7j9nz Experimental Determination of Apéry-like Identities&nbsp;for ζ(2n + 2)]<br>
250번째 줄: 260번째 줄:
 
* [http://arxiv.org/abs/hep-th/0004153 Central Binomial Sums, Multiple Clausen Values and Zeta Values]<br>
 
* [http://arxiv.org/abs/hep-th/0004153 Central Binomial Sums, Multiple Clausen Values and Zeta Values]<br>
 
** J. M. Borwein, D. J. Broadhurst, J. Kamnitzer, 2000
 
** J. M. Borwein, D. J. Broadhurst, J. Kamnitzer, 2000
* http://dx.doi.org/10.1016/S0370-2693(00)00574-8
+
* [http://dx.doi.org/10.1016/S0370-2693%2800%2900574-8 http://dx.doi.org/10.1016/S0370-2693(00)00574-8]
 
* '''[Lehmer1985]'''[http://www.jstor.org/stable/2322496 Interesting Series Involving the Central Binomial Coefficient]<br>
 
* '''[Lehmer1985]'''[http://www.jstor.org/stable/2322496 Interesting Series Involving the Central Binomial Coefficient]<br>
 
** D. H. Lehmer, The American Mathematical Monthly, Vol. 92, No. 7 (Aug. - Sep., 1985), pp. 449-457
 
** D. H. Lehmer, The American Mathematical Monthly, Vol. 92, No. 7 (Aug. - Sep., 1985), pp. 449-457
  
* [http://dx.doi.org/10.1016/0022-314X(85)90019-8 On the series Σk = 1∞(k2k)−1 k−n and related sums]<br>
+
* [http://dx.doi.org/10.1016/0022-314X%2885%2990019-8 On the series Σk = 1∞(k2k)−1 k−n and related sums]<br>
 
** I. J. Zucker, Journal of Number Theory, Volume 20, Issue 1, February 1985, Pages 92-102   
 
** I. J. Zucker, Journal of Number Theory, Volume 20, Issue 1, February 1985, Pages 92-102   
 
*  Some wonderful formulas ... an introduction to polylogarithms<br>
 
*  Some wonderful formulas ... an introduction to polylogarithms<br>
267번째 줄: 277번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">관련도서</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련도서</h5>
  
 
* http://books.google.co.kr/books?id=C0HPgWhEssYC<br>
 
* http://books.google.co.kr/books?id=C0HPgWhEssYC<br>
282번째 줄: 292번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">관련기사</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련기사</h5>
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
293번째 줄: 303번째 줄:
 
 
 
 
  
<h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic', dotum, gulim, sans-serif;">블로그</h5>
+
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">블로그</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>

2011년 10월 23일 (일) 07:00 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

 

중심이항계수의 근사식

 

 

 

급수와 중심이항계수
  • 이항급수와 이항정리
    \(\frac{1}{\sqrt{1-4z}}=\sum_{n=0}^{\infty} {{2n}\choose {n}} z^n\)
  • 역삼각함수
    \(2(\arcsin x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}\)
    \(\frac{2x \arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n\binom{2n}{n}}\)
  • 카탈란 수열(Catalan numbers) 의 생성함수
    \(G(x)= \frac{1-\sqrt{1-4x}}{2x}=\sum_{n=0}^{\infty}\frac{1}{n+1}{2n\choose n}x^n\)

 

 

 

 중심이항계수가 나타나는 급수
  • [Lehmer1985] 참조

 

\(\sum_{n=1}^{\infty}\frac{1}{n\binom{2n}{n}}=\frac{\pi\sqrt{3}}{9}\)

(증명)

 \(\frac{2x \arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n\binom{2n}{n}}\) 에서 \(x=\frac{1}{2}\)인 경우, \(\sum_{n=1}^{\infty}\frac{1}{n\binom{2n}{n}}=\frac{\pi\sqrt{3}}{9}\) 를 얻는다. ■

 

 

\(\sum_{n=1}^{\infty}\frac{1}{n^{2}\binom{2n}{n}}=\frac{\pi^2}{18}\)

(증명)

 \(2(\arcsin x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}\)에서 \(x=\frac{1}{2}\)인 경우, \(\sum_{n=1}^{\infty}\frac{1}{n^{2}\binom{2n}{n}}=\frac{\pi^2}{18}\) 를 얻는다. ■

 

 

\(\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=\frac{2\pi}{3}\operatorname{Cl}_2(\frac{\pi}{3})-\frac{4}{3}\zeta(3)=\pi\operatorname{Cl}_2(\frac{2\pi}{3})-\frac{4}{3}\zeta(3)=\frac{\pi\sqrt{3}}{18}(\psi^{(1)}(\frac{1}{3})-\psi^{(1)}(\frac{2}{3}))-\frac{4}{3}\zeta(3)\)

여기서 \(\operatorname{Cl}_2(\theta)\) 는 로바체프스키와 클라우센 함수, \(\psi^{(1)}\)는 트리감마 함수(trigamma function).

(증명)

http://www.research.att.com/~njas/sequences/A145438

\(\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=4\int_{0}^{\frac{1}{2}}(\arcsin x)^2}\frac{dx}{x}=-2\int_{0}^{\pi/3}x\log(2\sin \frac{x}{2})\,dx\)

http://www.wolframalpha.com/input/?i=integrate+(arcsin+x)^2/x+dx+from+x%3D0+to+1/2

 

좌변 http://www.wolframalpha.com/input/?i=sum+1%2F%28m%5E3*binom%282m%2Cm%29%29+from+1+to+infinity

우변 http://www.wolframalpha.com/input/?i=-4*zeta(3)/3%2Bpi*sqrt(3)*(trigamma(1/3)-trigamma(2/3))/18

 

 

(Comtet의 공식)

\(\sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}=\frac{17\pi^4}{3240}\)

 

(증명)

\(2(\arcsin x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}\) 의 양변을 \(2x\)로 나눈뒤, 다음과 같은 적분을 구하자.

\(\int_{0}^{\frac{1}{2}}\int_{0}^{u}\frac{(\arcsin x)^2}{x}\,dx\,\frac{du}{u}=\sum_{n=1}^{\infty}\int_{0}^{\frac{1}{2}}\int_{0}^{u}\frac{(2x)^{2n-1}}{n^2\binom{2n}{n}}\,dx\,\frac{du}{u}=\sum_{n=1}^{\infty}\int_{0}^{\frac{1}{2}}\frac{(2u)^{2n}}{4n^3\binom{2n}{n}}\,\frac{du}{u}\)

우변으로부터 \(\sum_{n=1}^{\infty}\frac{1}{8n^4\binom{2n}{n}}\)을 얻는다.

 

한편

\(\int_{0}^{\frac{1}{2}}\int_{0}^{u}\frac{(\arcsin x)^2}{x}\,dx\,\frac{du}{u}=\int_{0}^{\frac{1}{2}}\int_{x}^{\frac{1}{2}}\frac{(\arcsin x)^2}{xu}\,du\,dx=\int_{0}^{\frac{1}{2}}\log 2x\frac{(\arcsin x)^2}{x}\,dx\) 이므로,

 \(x=\sin\frac{t}{2}\)로 치환하면,

\(\int_{0}^{\frac{1}{2}}\log 2x\frac{(\arcsin x)^2}{x}\,dx=\frac{1}{4}\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx\)  를 얻는다.

따라서,

\(\frac{1}{8}\sum_{n=1}^{\infty}\frac{1}{n^4\binom{2n}{n}}=\frac{1}{4}\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx\) 이다.

이제 로그 사인 적분 (log sine integrals) 에서 얻은 다음 결과를 사용하자.

\(\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx=\frac{17\pi^4}{6480}\)

 

 \(\sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}=\frac{17\pi^4}{3240}\) 를 얻는다. ■

 

원주율의 유리수 근사와 중심이항계수

 \(\sum_{n=1}^{\infty}\frac{2^{n}}{\binom{2n}{n}}=\frac{\pi}{2}+1\)

\(\sum_{n=1}^{\infty}\frac{n2^{n}}{\binom{2n}{n}}=\pi+3\)

\(\sum_{n=1}^{\infty}\frac{n^2 2^{n}}{\binom{2n}{n}}=\frac{7\pi}{2}+11\)

\(\sum_{n=1}^{\infty}\frac{n^3 2^{n}}{\binom{2n}{n}}=\frac{35\pi}{2}+55\)

\(\sum_{n=1}^{\infty}\frac{n^4 2^{n}}{\binom{2n}{n}}=113\pi+355\)

\(\sum_{n=1}^{\infty}\frac{n^{5} 2^{n}}{\binom{2n}{n}} = \frac{1787\pi}{2}+2807\)

\(\sum_{n=1}^{\infty}\frac{n^{6} 2^{n}}{\binom{2n}{n}} = \frac{16717\pi}{2}+26259\)

\(\sum_{n=1}^{\infty}\frac{n^{10} 2^{n}}{\binom{2n}{n}}=229093376\pi+719718067\)

 http://www.wolframalpha.com/input/?i=sum+1%2F%28m%5E3*binom%282m%2Cm%29%29+from+1+to+infinity

http://www.wolframalpha.com/input/?i=sum+m^6*2^m/(binom(2m,m))+from+1+to+infinity

일반적으로 \(k\in\mathbb{N}\)에 대하여,

\(\sum_{n=1}^{\infty}\frac{n^{k} 2^{n}}{\binom{2n}{n}}=a\pi+b\) , (a와 b는 유리수) 형태로 주어진다. [Lehmer1985] 참조

 

 

 

리만제타함수

\(\zeta(2)=3\sum_{n=1}^{\infty}\frac{1}{n^{2}\binom{2n}{n}}\)

\(\zeta(3) = \frac{5}{2} \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^3\binom{2n}{n}}\)

\(\zeta(4) = \frac{36}{17} \sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

[Lehmer1985]

에는 다음과 같은 공식이 나오지만, 잘못된 것이다.

\(\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=-\frac{\zeta(3)}{3}-\frac{\pi\sqrt{3}}{72}(\psi^{(1)}(\frac{1}{3})-\psi^{(1)}(\frac{2}{3}))\)

바른 공식은 다음과 같다.

\(\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=\frac{\pi\sqrt{3}}{18}(\psi^{(1)}(\frac{1}{3})-\psi^{(1)}(\frac{2}{3}))-\frac{4}{3}\zeta(3)\)

여기서 \(\psi^{(1)}\)는 트리감마(trigamma)함수. 트리감마 함수(trigamma function)항목 참조

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문
  • On the series Σk = 1∞(k2k)−1 k−n and related sums
    • I. J. Zucker, Journal of Number Theory, Volume 20, Issue 1, February 1985, Pages 92-102   
  • Some wonderful formulas ... an introduction to polylogarithms
    • A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286

 

 

관련도서

 

 

관련기사

 

 

블로그