"중심이항계수 (central binomial coefficient)"의 두 판 사이의 차이
1번째 줄: | 1번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">이 항목의 스프링노트 원문주소</h5> |
* [[중심이항계수(central binomial coefficient)]]<br> | * [[중심이항계수(central binomial coefficient)]]<br> | ||
7번째 줄: | 7번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">개요</h5> |
* 다음과 같은 [[이항계수와 조합|이항계수]]로 정의<br>'''<math>{2n \choose n}=\frac{(2n)!}{(n!)^2}</math>'''<br> | * 다음과 같은 [[이항계수와 조합|이항계수]]로 정의<br>'''<math>{2n \choose n}=\frac{(2n)!}{(n!)^2}</math>'''<br> | ||
18번째 줄: | 18번째 줄: | ||
− | <h5 style=" | + | <h5 style="margin: 0px; line-height: 2em;">중심이항계수의 근사식</h5> |
+ | |||
+ | * http://planetmath.org/encyclopedia/AsymptoticsOfCentralBinomialCoefficient.html<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">급수와 중심이항계수</h5> | ||
* [[이항급수와 이항정리]]<br><math>\frac{1}{\sqrt{1-4z}}=\sum_{n=0}^{\infty} {{2n}\choose {n}} z^n</math><br> | * [[이항급수와 이항정리]]<br><math>\frac{1}{\sqrt{1-4z}}=\sum_{n=0}^{\infty} {{2n}\choose {n}} z^n</math><br> | ||
30번째 줄: | 40번째 줄: | ||
− | <h5 style=" | + | <h5 style="margin: 0px; line-height: 2em;"> 중심이항계수가 나타나는 급수</h5> |
* '''[Lehmer1985]''' 참조<br> | * '''[Lehmer1985]''' 참조<br> | ||
58번째 줄: | 68번째 줄: | ||
<math>\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=\frac{2\pi}{3}\operatorname{Cl}_2(\frac{\pi}{3})-\frac{4}{3}\zeta(3)=\pi\operatorname{Cl}_2(\frac{2\pi}{3})-\frac{4}{3}\zeta(3)=\frac{\pi\sqrt{3}}{18}(\psi^{(1)}(\frac{1}{3})-\psi^{(1)}(\frac{2}{3}))-\frac{4}{3}\zeta(3)</math> | <math>\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=\frac{2\pi}{3}\operatorname{Cl}_2(\frac{\pi}{3})-\frac{4}{3}\zeta(3)=\pi\operatorname{Cl}_2(\frac{2\pi}{3})-\frac{4}{3}\zeta(3)=\frac{\pi\sqrt{3}}{18}(\psi^{(1)}(\frac{1}{3})-\psi^{(1)}(\frac{2}{3}))-\frac{4}{3}\zeta(3)</math> | ||
− | 여기서 <math>\psi^{(1)}</math>는 [[트리감마 함수(trigamma function)]]. | + | 여기서 <math>\operatorname{Cl}_2(\theta)</math> 는 [[로바체프스키 함수|로바체프스키와 클라우센 함수]], <math>\psi^{(1)}</math>는 [[트리감마 함수(trigamma function)]]. |
(증명) | (증명) | ||
− | http://www.research.att.com/~njas/sequences/A145438 | + | [http://www.research.att.com/%7Enjas/sequences/A145438 http://www.research.att.com/~njas/sequences/A145438] |
<math>\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=4\int_{0}^{\frac{1}{2}}(\arcsin x)^2}\frac{dx}{x}=-2\int_{0}^{\pi/3}x\log(2\sin \frac{x}{2})\,dx</math> | <math>\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=4\int_{0}^{\frac{1}{2}}(\arcsin x)^2}\frac{dx}{x}=-2\int_{0}^{\pi/3}x\log(2\sin \frac{x}{2})\,dx</math> | ||
− | http://www.wolframalpha.com/input/?i=integrate+(arcsin+x)^2/x+dx+from+x%3D0+to+1/2 | + | [http://www.wolframalpha.com/input/?i=integrate+%28arcsin+x%29%5E2/x+dx+from+x%3D0+to+1/2 http://www.wolframalpha.com/input/?i=integrate+(arcsin+x)^2/x+dx+from+x%3D0+to+1/2] |
72번째 줄: | 82번째 줄: | ||
좌변 http://www.wolframalpha.com/input/?i=sum+1%2F%28m%5E3*binom%282m%2Cm%29%29+from+1+to+infinity | 좌변 http://www.wolframalpha.com/input/?i=sum+1%2F%28m%5E3*binom%282m%2Cm%29%29+from+1+to+infinity | ||
− | + | 우변 [http://www.wolframalpha.com/input/?i=-4*zeta%283%29/3%2Bpi*sqrt%283%29*%28trigamma%281/3%29-trigamma%282/3%29%29/18 http://www.wolframalpha.com/input/?i=-4*zeta(3)/3%2Bpi*sqrt(3)*(trigamma(1/3)-trigamma(2/3))/18] | |
■ | ■ | ||
118번째 줄: | 128번째 줄: | ||
− | <h5 style=" | + | <h5 style="margin: 0px; line-height: 2em;">원주율의 유리수 근사와 중심이항계수</h5> |
<math>\sum_{n=1}^{\infty}\frac{2^{n}}{\binom{2n}{n}}=\frac{\pi}{2}+1</math> | <math>\sum_{n=1}^{\infty}\frac{2^{n}}{\binom{2n}{n}}=\frac{\pi}{2}+1</math> | ||
138번째 줄: | 148번째 줄: | ||
http://www.wolframalpha.com/input/?i=sum+1%2F%28m%5E3*binom%282m%2Cm%29%29+from+1+to+infinity | http://www.wolframalpha.com/input/?i=sum+1%2F%28m%5E3*binom%282m%2Cm%29%29+from+1+to+infinity | ||
− | http://www.wolframalpha.com/input/?i=sum+m^6*2^m/(binom(2m,m))+from+1+to+infinity | + | [http://www.wolframalpha.com/input/?i=sum+m%5E6*2%5Em/%28binom%282m,m%29%29+from+1+to+infinity http://www.wolframalpha.com/input/?i=sum+m^6*2^m/(binom(2m,m))+from+1+to+infinity] |
일반적으로 <math>k\in\mathbb{N}</math>에 대하여, | 일반적으로 <math>k\in\mathbb{N}</math>에 대하여, | ||
150번째 줄: | 160번째 줄: | ||
− | <h5 style=" | + | <h5 style="margin: 0px; line-height: 2em;">리만제타함수</h5> |
<math>\zeta(2)=3\sum_{n=1}^{\infty}\frac{1}{n^{2}\binom{2n}{n}}</math> | <math>\zeta(2)=3\sum_{n=1}^{\infty}\frac{1}{n^{2}\binom{2n}{n}}</math> | ||
162번째 줄: | 172번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">재미있는 사실</h5> |
173번째 줄: | 183번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">역사</h5> |
185번째 줄: | 195번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">메모</h5> |
'''[Lehmer1985]''' | '''[Lehmer1985]''' | ||
203번째 줄: | 213번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련된 항목들</h5> |
* [[카탈란 수열(Catalan numbers)]]<br> | * [[카탈란 수열(Catalan numbers)]]<br> | ||
214번째 줄: | 224번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">수학용어번역</h5> |
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | ||
227번째 줄: | 237번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">사전 형태의 자료</h5> |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
235번째 줄: | 245번째 줄: | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
− | * [http://www.research.att.com/ | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> |
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= | ||
242번째 줄: | 252번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련논문</h5> |
* [http://escholarship.org/uc/item/7wd7j9nz Experimental Determination of Apéry-like Identities for ζ(2n + 2)]<br> | * [http://escholarship.org/uc/item/7wd7j9nz Experimental Determination of Apéry-like Identities for ζ(2n + 2)]<br> | ||
250번째 줄: | 260번째 줄: | ||
* [http://arxiv.org/abs/hep-th/0004153 Central Binomial Sums, Multiple Clausen Values and Zeta Values]<br> | * [http://arxiv.org/abs/hep-th/0004153 Central Binomial Sums, Multiple Clausen Values and Zeta Values]<br> | ||
** J. M. Borwein, D. J. Broadhurst, J. Kamnitzer, 2000 | ** J. M. Borwein, D. J. Broadhurst, J. Kamnitzer, 2000 | ||
− | * http://dx.doi.org/10.1016/S0370-2693(00)00574-8 | + | * [http://dx.doi.org/10.1016/S0370-2693%2800%2900574-8 http://dx.doi.org/10.1016/S0370-2693(00)00574-8] |
* '''[Lehmer1985]'''[http://www.jstor.org/stable/2322496 Interesting Series Involving the Central Binomial Coefficient]<br> | * '''[Lehmer1985]'''[http://www.jstor.org/stable/2322496 Interesting Series Involving the Central Binomial Coefficient]<br> | ||
** D. H. Lehmer, The American Mathematical Monthly, Vol. 92, No. 7 (Aug. - Sep., 1985), pp. 449-457 | ** D. H. Lehmer, The American Mathematical Monthly, Vol. 92, No. 7 (Aug. - Sep., 1985), pp. 449-457 | ||
− | * [http://dx.doi.org/10.1016/0022-314X | + | * [http://dx.doi.org/10.1016/0022-314X%2885%2990019-8 On the series Σk = 1∞(k2k)−1 k−n and related sums]<br> |
** I. J. Zucker, Journal of Number Theory, Volume 20, Issue 1, February 1985, Pages 92-102 | ** I. J. Zucker, Journal of Number Theory, Volume 20, Issue 1, February 1985, Pages 92-102 | ||
* Some wonderful formulas ... an introduction to polylogarithms<br> | * Some wonderful formulas ... an introduction to polylogarithms<br> | ||
267번째 줄: | 277번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련도서</h5> |
* http://books.google.co.kr/books?id=C0HPgWhEssYC<br> | * http://books.google.co.kr/books?id=C0HPgWhEssYC<br> | ||
282번째 줄: | 292번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">관련기사</h5> |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
293번째 줄: | 303번째 줄: | ||
− | <h5 style=" | + | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">블로그</h5> |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> |
2011년 10월 23일 (일) 07:00 판
이 항목의 스프링노트 원문주소
개요
중심이항계수의 근사식
급수와 중심이항계수
- 이항급수와 이항정리
\(\frac{1}{\sqrt{1-4z}}=\sum_{n=0}^{\infty} {{2n}\choose {n}} z^n\) - 역삼각함수
\(2(\arcsin x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}\)
\(\frac{2x \arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n\binom{2n}{n}}\) - 카탈란 수열(Catalan numbers) 의 생성함수
\(G(x)= \frac{1-\sqrt{1-4x}}{2x}=\sum_{n=0}^{\infty}\frac{1}{n+1}{2n\choose n}x^n\)
중심이항계수가 나타나는 급수
- [Lehmer1985] 참조
\(\sum_{n=1}^{\infty}\frac{1}{n\binom{2n}{n}}=\frac{\pi\sqrt{3}}{9}\)
(증명)
\(\frac{2x \arcsin x}{\sqrt{1-x^2}}=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n\binom{2n}{n}}\) 에서 \(x=\frac{1}{2}\)인 경우, \(\sum_{n=1}^{\infty}\frac{1}{n\binom{2n}{n}}=\frac{\pi\sqrt{3}}{9}\) 를 얻는다. ■
\(\sum_{n=1}^{\infty}\frac{1}{n^{2}\binom{2n}{n}}=\frac{\pi^2}{18}\)
(증명)
\(2(\arcsin x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}\)에서 \(x=\frac{1}{2}\)인 경우, \(\sum_{n=1}^{\infty}\frac{1}{n^{2}\binom{2n}{n}}=\frac{\pi^2}{18}\) 를 얻는다. ■
\(\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=\frac{2\pi}{3}\operatorname{Cl}_2(\frac{\pi}{3})-\frac{4}{3}\zeta(3)=\pi\operatorname{Cl}_2(\frac{2\pi}{3})-\frac{4}{3}\zeta(3)=\frac{\pi\sqrt{3}}{18}(\psi^{(1)}(\frac{1}{3})-\psi^{(1)}(\frac{2}{3}))-\frac{4}{3}\zeta(3)\)
여기서 \(\operatorname{Cl}_2(\theta)\) 는 로바체프스키와 클라우센 함수, \(\psi^{(1)}\)는 트리감마 함수(trigamma function).
(증명)
http://www.research.att.com/~njas/sequences/A145438
\(\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=4\int_{0}^{\frac{1}{2}}(\arcsin x)^2}\frac{dx}{x}=-2\int_{0}^{\pi/3}x\log(2\sin \frac{x}{2})\,dx\)
http://www.wolframalpha.com/input/?i=integrate+(arcsin+x)^2/x+dx+from+x%3D0+to+1/2
좌변 http://www.wolframalpha.com/input/?i=sum+1%2F%28m%5E3*binom%282m%2Cm%29%29+from+1+to+infinity
우변 http://www.wolframalpha.com/input/?i=-4*zeta(3)/3%2Bpi*sqrt(3)*(trigamma(1/3)-trigamma(2/3))/18
■
(Comtet의 공식)
\(\sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}=\frac{17\pi^4}{3240}\)
(증명)
\(2(\arcsin x)^2=\sum_{n=1}^{\infty}\frac{(2x)^{2n}}{n^2\binom{2n}{n}}\) 의 양변을 \(2x\)로 나눈뒤, 다음과 같은 적분을 구하자.
\(\int_{0}^{\frac{1}{2}}\int_{0}^{u}\frac{(\arcsin x)^2}{x}\,dx\,\frac{du}{u}=\sum_{n=1}^{\infty}\int_{0}^{\frac{1}{2}}\int_{0}^{u}\frac{(2x)^{2n-1}}{n^2\binom{2n}{n}}\,dx\,\frac{du}{u}=\sum_{n=1}^{\infty}\int_{0}^{\frac{1}{2}}\frac{(2u)^{2n}}{4n^3\binom{2n}{n}}\,\frac{du}{u}\)
우변으로부터 \(\sum_{n=1}^{\infty}\frac{1}{8n^4\binom{2n}{n}}\)을 얻는다.
한편
\(\int_{0}^{\frac{1}{2}}\int_{0}^{u}\frac{(\arcsin x)^2}{x}\,dx\,\frac{du}{u}=\int_{0}^{\frac{1}{2}}\int_{x}^{\frac{1}{2}}\frac{(\arcsin x)^2}{xu}\,du\,dx=\int_{0}^{\frac{1}{2}}\log 2x\frac{(\arcsin x)^2}{x}\,dx\) 이므로,
\(x=\sin\frac{t}{2}\)로 치환하면,
\(\int_{0}^{\frac{1}{2}}\log 2x\frac{(\arcsin x)^2}{x}\,dx=\frac{1}{4}\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx\) 를 얻는다.
따라서,
\(\frac{1}{8}\sum_{n=1}^{\infty}\frac{1}{n^4\binom{2n}{n}}=\frac{1}{4}\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx\) 이다.
이제 로그 사인 적분 (log sine integrals) 에서 얻은 다음 결과를 사용하자.
\(\int_{0}^{\pi/3}x\log^2(2\sin \frac{x}{2})\,dx=\frac{17\pi^4}{6480}\)
\(\sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}=\frac{17\pi^4}{3240}\) 를 얻는다. ■
원주율의 유리수 근사와 중심이항계수
\(\sum_{n=1}^{\infty}\frac{2^{n}}{\binom{2n}{n}}=\frac{\pi}{2}+1\)
\(\sum_{n=1}^{\infty}\frac{n2^{n}}{\binom{2n}{n}}=\pi+3\)
\(\sum_{n=1}^{\infty}\frac{n^2 2^{n}}{\binom{2n}{n}}=\frac{7\pi}{2}+11\)
\(\sum_{n=1}^{\infty}\frac{n^3 2^{n}}{\binom{2n}{n}}=\frac{35\pi}{2}+55\)
\(\sum_{n=1}^{\infty}\frac{n^4 2^{n}}{\binom{2n}{n}}=113\pi+355\)
\(\sum_{n=1}^{\infty}\frac{n^{5} 2^{n}}{\binom{2n}{n}} = \frac{1787\pi}{2}+2807\)
\(\sum_{n=1}^{\infty}\frac{n^{6} 2^{n}}{\binom{2n}{n}} = \frac{16717\pi}{2}+26259\)
\(\sum_{n=1}^{\infty}\frac{n^{10} 2^{n}}{\binom{2n}{n}}=229093376\pi+719718067\)
http://www.wolframalpha.com/input/?i=sum+1%2F%28m%5E3*binom%282m%2Cm%29%29+from+1+to+infinity
http://www.wolframalpha.com/input/?i=sum+m^6*2^m/(binom(2m,m))+from+1+to+infinity
일반적으로 \(k\in\mathbb{N}\)에 대하여,
\(\sum_{n=1}^{\infty}\frac{n^{k} 2^{n}}{\binom{2n}{n}}=a\pi+b\) , (a와 b는 유리수) 형태로 주어진다. [Lehmer1985] 참조
리만제타함수
\(\zeta(2)=3\sum_{n=1}^{\infty}\frac{1}{n^{2}\binom{2n}{n}}\)
\(\zeta(3) = \frac{5}{2} \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^3\binom{2n}{n}}\)
\(\zeta(4) = \frac{36}{17} \sum_{n=1}^\infty \frac{1}{n^4\binom{2n}{n}}\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
[Lehmer1985]
에는 다음과 같은 공식이 나오지만, 잘못된 것이다.
\(\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=-\frac{\zeta(3)}{3}-\frac{\pi\sqrt{3}}{72}(\psi^{(1)}(\frac{1}{3})-\psi^{(1)}(\frac{2}{3}))\)
바른 공식은 다음과 같다.
\(\sum_{n=1}^\infty \frac{1}{n^3\binom{2n}{n}}=\frac{\pi\sqrt{3}}{18}(\psi^{(1)}(\frac{1}{3})-\psi^{(1)}(\frac{2}{3}))-\frac{4}{3}\zeta(3)\)
여기서 \(\psi^{(1)}\)는 트리감마(trigamma)함수. 트리감마 함수(trigamma function)항목 참조
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Central_binomial_coefficient
- http://math world.wolfram.com/CentralBinomialCoefficient.html
- http://mathworld.wolfram.com/BinomialSums.html
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Experimental Determination of Apéry-like Identities for ζ(2n + 2)
- David H. Bailey, Jonathan M. Borwein, and David M. Bradley
- Evaluations of binomial series
- Jonathan M. Borwein1 and Roland Girgensohn, 2004
- Central Binomial Sums, Multiple Clausen Values and Zeta Values
- J. M. Borwein, D. J. Broadhurst, J. Kamnitzer, 2000
- http://dx.doi.org/10.1016/S0370-2693(00)00574-8
- [Lehmer1985]Interesting Series Involving the Central Binomial Coefficient
- D. H. Lehmer, The American Mathematical Monthly, Vol. 92, No. 7 (Aug. - Sep., 1985), pp. 449-457
- On the series Σk = 1∞(k2k)−1 k−n and related sums
- I. J. Zucker, Journal of Number Theory, Volume 20, Issue 1, February 1985, Pages 92-102
- Some wonderful formulas ... an introduction to polylogarithms
- A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286
관련도서
관련기사
- 네이버 뉴스 검색 (키워드 수정)