"푸리에 급수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
8번째 줄: 8번째 줄:
  
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
 +
 +
*   <br>
  
 
 
 
 
  
 
 
 
 
 +
 +
 
 +
 +
*  푸리에 계수의 정의<br><math>a_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \cos(nx)\, dx, \quad n \ge 0</math><br><math>b_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \sin(nx)\, dx, \quad n \ge 1</math><br>
 +
 +
 
 +
 +
 
 +
 +
<math>-\pi < x < \pi</math> 일 때, <math>x=2\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n} \sin(nx)</math>
  
 
 
 
 

2010년 5월 27일 (목) 03:50 판

이 항목의 스프링노트 원문주소

 

 

개요
  •  

 

 

 

  • 푸리에 계수의 정의
    \(a_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \cos(nx)\, dx, \quad n \ge 0\)
    \(b_n = \frac{1}{\pi}\int_{-\pi}^\pi f(x) \sin(nx)\, dx, \quad n \ge 1\)

 

 

\(-\pi < x < \pi\) 일 때, \(x=2\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n} \sin(nx)\)

 

\(0 < \theta \leq \pi\) 일때, \(\frac{\pi -\theta}{2}=\sum_{n=1}^{\infty}\frac{1}{n}\sin n\theta\)

 

 

  • 로그감마 함수
    \(\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx\)

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그