"유리함수의 부정적분"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
14번째 줄: | 14번째 줄: | ||
* [[바이어슈트라스 치환]] | * [[바이어슈트라스 치환]] | ||
* [[삼각치환]] | * [[삼각치환]] | ||
+ | |||
+ | |||
+ | ==매스매티카 파일 및 계산 리소스== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxSEZ2SjZITHlTZW8/edit |
2012년 11월 18일 (일) 08:16 판
예
$\frac{1}{1+x^4}$의 부정적분
- 부분분수로 분해하면 다음을 얻는다 $$\frac{1}{1+x^4}=-\frac{x-\sqrt{2}}{2 \sqrt{2} \left(x^2-\sqrt{2} x+1\right)}+\frac{x+\sqrt{2}}{2 \sqrt{2} \left(x^2+\sqrt{2} x+1\right)}$$
- 부분분수 분해에 등장하는 유리함수의 부정적분은 다음과 같다
$$\int \frac{x-\sqrt{2}}{2 \sqrt{2} \left(x^2-\sqrt{2} x+1\right)} \, dx= \frac{\log \left(x^2-\sqrt{2} x+1\right)+2 \tan ^{-1}\left(1-\sqrt{2} x\right)}{4 \sqrt{2}} $$ $$\int \frac{x+\sqrt{2}}{2 \sqrt{2} \left(x^2+\sqrt{2} x+1\right)} \, dx= \frac{\log \left(x^2+\sqrt{2} x+1\right)+2 \tan ^{-1}\left(\sqrt{2} x+1\right)}{4 \sqrt{2}}$$
- 따라서 $$\int \frac{1}{1+x^4} \, dx=\frac{-\log \left(x^2-\sqrt{2} x+1\right)+\log \left(x^2+\sqrt{2} x+1\right)-2 \tan ^{-1}\left(1-\sqrt{2} x\right)+2 \tan ^{-1}\left(\sqrt{2} x+1\right)}{4 \sqrt{2}}$$
관련된 항목들