"펠 방정식(Pell's equation)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query=” 문자열을 “” 문자열로)
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
42번째 줄: 42번째 줄:
 
==d=7인 경우==
 
==d=7인 경우==
  
* <math>\sqrt{7}</math>의 연분수 전개를 통한 유리수근사<br><math>\frac{2}{1},\frac{3}{1},\frac{5}{2},\frac{8}{3},\frac{37}{14}\cdots</math><br>
+
* <math>\sqrt{7}</math>의 연분수 전개를 통한 유리수근사:<math>\frac{2}{1},\frac{3}{1},\frac{5}{2},\frac{8}{3},\frac{37}{14}\cdots</math><br>
*  펠 방정식의 해 찾기<br><math>2^2-d\cdot 1^2=-3</math><br><math>3^2-d\cdot 1^2=2</math><br><math>5^2-d\cdot 2^2=-3</math><br><math>8^2-d\cdot 3^2=1</math><br><math>37^2-d\cdot 14^2=-3</math><br>
+
*  펠 방정식의 해 찾기:<math>2^2-d\cdot 1^2=-3</math>:<math>3^2-d\cdot 1^2=2</math>:<math>5^2-d\cdot 2^2=-3</math>:<math>8^2-d\cdot 3^2=1</math>:<math>37^2-d\cdot 14^2=-3</math><br>
 
* 따라서 펠 방정식 <math>x^2-7y^2=1</math>의 fundamental solution 은 <math>(8,3)</math> 이된다
 
* 따라서 펠 방정식 <math>x^2-7y^2=1</math>의 fundamental solution 은 <math>(8,3)</math> 이된다
  

2013년 1월 12일 (토) 10:41 판

개요

  • \(x^2-dy^2=1\) (\(d\) 는 완전제곱수를 약수로 갖지 않는 1보다 큰 자연수)형태의 디오판투스 방정식
  • 연분수 전개를 통하여 모든 해를 구할 수 있음
  • 해의 집합은 군의 구조를 통하여 이해할 수 있음
  • \(x^2-dy^2=\pm 1\) 의 자연수 해를 구하는 문제는 실수 이차 수체의 unit 을 구하는 문제와 같음



연분수 전개와 fundamental solution

  • \(\sqrt{d}\) 를 연분수 전개할때 얻어지는 convergents \({h_i}/{k_i}\) 가 펠 방정식의 해가 되는 \(x=h_i, y=k_i\) 를 찾을 수 있으며, 이 때 \(x\)값을 가장 작게 하는 해를 fundamental solution 이라 한다.

(정리)

펠 방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다.

(증명)

연분수와 유리수 근사 에서 펠 방정식에 관련한 중요한 정리는 다음과 같다

무리수 \(\alpha\)에 대하여, 유리수 \(p/q\)가 아래의 부등식을 만족시키는 경우, \(p/q\)는 무리수 \(\alpha\)의 단순연분수 전개의 convergents 중의 하나이다

\(|\alpha-\frac{p}{q}|<\frac{1}{2{q^2}}\)

이 정리를 이용하자.

펠 방정식의 정수해 \(x_ {1}^2-dy_ {1}^2=1\) 는 \(x_ {1}^2-dy_ {1}^2=(x_{1}+\sqrt{d}y_{1})(x_{1}-\sqrt{d}y_{1})=1\)를 만족시키므로,

\(|x_{1}-\sqrt{d}y_{1}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}|}\)

\(|\sqrt{d}-\frac{x_{1}}{y_{1}}|=\frac{1}{|x_{1}+\sqrt{d}y_{1}||y_{1}|}<\frac{1}{\sqrt{d}y_ {1}^{2}}\leq \frac{1}{2y_ {1}^{2}}\)

따라서, 펠 방정식의 해는 연분수 전개의 convergents 중에서 찾을 수 있다. \[FilledSquare] =='"`UNIQ--h-2--QINU`"'d=7인 경우== * \(\sqrt{7}\)의 연분수 전개를 통한 유리수근사\[\frac{2}{1},\frac{3}{1},\frac{5}{2},\frac{8}{3},\frac{37}{14}\cdots\]

  • 펠 방정식의 해 찾기\[2^2-d\cdot 1^2=-3\]\[3^2-d\cdot 1^2=2\]\[5^2-d\cdot 2^2=-3\]\[8^2-d\cdot 3^2=1\]\[37^2-d\cdot 14^2=-3\]
  • 따라서 펠 방정식 \(x^2-7y^2=1\)의 fundamental solution 은 \((8,3)\) 이된다



d=13

  • fundamental solution \((x_ 1,y_ 1)\) 가 \(y_ 1>6\) 를 만족시키는 가장 작은 d
  • \(649^2-13\cdot180^2=1\)



d=61

d=109

  • 페르마의 문제
  • \(158070671986249^2 -109\cdot15140424455100^2=1\)




역사



메모

관련된 항목들

매스매티카 파일 및 계산 리소스

사전 형태의 자료



관련논문






블로그