"타니야마-시무라 추측(정리)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
2번째 줄: 2번째 줄:
  
 
*  유리수체 위에 정의된 타원 곡선의 Hasse-Weil L-함수와 weight 2인 모듈라 형식의 관계<br>
 
*  유리수체 위에 정의된 타원 곡선의 Hasse-Weil L-함수와 weight 2인 모듈라 형식의 관계<br>
 
+
* [[페르마의 마지막 정리]]의 증명에 사용
 
 
 
 
  
 
   
 
   
11번째 줄: 8번째 줄:
 
==Weil의 역 정리==
 
==Weil의 역 정리==
  
 
 
 
 
 
  
 
   
 
   
22번째 줄: 14번째 줄:
  
 
*  타원곡선:<math>E: y^2=x^3-4x^2+16</math><br> conductor = 11<br>
 
*  타원곡선:<math>E: y^2=x^3-4x^2+16</math><br> conductor = 11<br>
*  유리수체 위의 해의 개수:<math>E(\mathbb{F}_p)=\{(x,y)\in \mathbb{F}_p^2|y^2=x^3-4x^2+16\}\cup \{(\infty,\infty)\}</math>:<math>M_p=\#E(\mathbb{F}_p)</math> ::<math>a_p=p+1-M_p</math><br>
+
*  유리수체 위의 해의 개수
* [[모듈라 형식(modular forms)|모듈라 형식]]:<math>f(\tau)={\eta(\tau)^2\eta(11\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{n})^2(1-q^{11n})^2=\sum_{n=1}^{\infty}c_nq^n=q - 2 q^{2 }- q^{3 }+ 2 q^{4 }+ q^{5 }+ 2 q^{6 }- 2 q^{7 }- 2 q^{9 }-  2 q^{10 }+ q^{11 }- 2 q^{12 }+ 4 q^{13 }+ 4 q^{14 }- q^{15 }- 4 q^{16 }- 2 q^{17}+\cdots</math><br>
+
:<math>E(\mathbb{F}_p)=\{(x,y)\in \mathbb{F}_p^2|y^2=x^3-4x^2+16\}\cup \{(\infty,\infty)\}</math>
*  다음 표는 소수 <math>p</math>에 대하여 각각 위에서 정의한 <math>p,a_p,c_p</math> 를 나타냄. <math>a_p=c_p</math> 이 일반적으로 성립함을 볼 수 있음:<math>\begin{array}{ccc}  p & {a_p} & c_p \\  2 & -1 & -2 \\  3 & -1 & -1 \\  5 & 1 & 1 \\  7 & -2 & -2 \\  11 & 1 & 1 \\  13 & 4 & 4 \\  17 & -2 & -2 \\  19 & 0 & 0 \\  23 & -1 & -1 \\  29 & 0 & 0 \\  31 & 7 & 7 \\  37 & 3 & 3 \\  41 & -8 & -8 \\  43 & -6 & -6 \\  47 & 8 & 8 \\  53 & -6 & -6 \\  59 & 5 & 5 \\  61 & 12 & 12 \\  67 & -7 & -7 \\  71 & -3 & -3 \end{array} </math><br>
+
:<math>M_p=\#E(\mathbb{F}_p)</math>
 +
:<math>a_p=p+1-M_p</math><br>
 +
* [[모듈라 형식(modular forms)|모듈라 형식]]
 +
:<math>
 +
\begin{aligned}
 +
f(\tau)& ={\eta(\tau)^2\eta(11\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{n})^2(1-q^{11n})^2\\
 +
{}& =\sum_{n=1}^{\infty}c_nq^n=q - 2 q^{2 }- q^{3 }+ 2 q^{4 }+ q^{5 }+ 2 q^{6 }- 2 q^{7 }- 2 q^{9 }-  2 q^{10 }+ q^{11 }- 2 q^{12 }+ 4 q^{13 }+ 4 q^{14 }- q^{15 }- 4 q^{16 }- 2 q^{17}+\cdots
 +
\end{aligned}
 +
</math>
 +
*  다음 표는 소수 <math>p</math>에 대하여 각각 위에서 정의한 <math>p,a_p,c_p</math> 를 나타냄. <math>a_p=c_p</math> 이 일반적으로 성립함을 볼 수 있음
 +
:<math>\begin{array}{c|c|c}  p & {a_p} & c_p \\  2 & -1 & -2 \\  3 & -1 & -1 \\  5 & 1 & 1 \\  7 & -2 & -2 \\  11 & 1 & 1 \\  13 & 4 & 4 \\  17 & -2 & -2 \\  19 & 0 & 0 \\  23 & -1 & -1 \\  29 & 0 & 0 \\  31 & 7 & 7 \\  37 & 3 & 3 \\  41 & -8 & -8 \\  43 & -6 & -6 \\  47 & 8 & 8 \\  53 & -6 & -6 \\  59 & 5 & 5 \\  61 & 12 & 12 \\  67 & -7 & -7 \\  71 & -3 & -3 \end{array} </math><br>
  
 
   
 
   
33번째 줄: 35번째 줄:
  
 
*  타원곡선:<math>E: y^2=x^3+x^2+4x+4</math><br> conductor = 20<br>
 
*  타원곡선:<math>E: y^2=x^3+x^2+4x+4</math><br> conductor = 20<br>
*  유리수체 위의 해의 개수:<math>E(\mathbb{F}_p)=\{(x,y)\in \mathbb{F}_p^2|E: y^2=x^3+x^2+4x+4\}\cup \{(\infty,\infty)\}</math>:<math>M_p=\#E(\mathbb{F}_p)</math>:<math>a_p=p+1-M_p</math><br>
+
*  유리수체 위의 해의 개수
* [[모듈라 형식(modular forms)|모듈라 형식]]:<math>f(\tau)={\eta(2\tau)^2\eta(10\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{2n})^2(1-q^{10n})^2=\sum_{n=1}^{\infty}c_nq^n=q - 2 q^{3 }- q^{5 }+ 2 q^{7 }+ q^{9 }+ 2 q^{13 }+ 2 q^{15 }- 6 q^{17 }- 4 q^{19 }-  4 q^{21 }+ 6 q^{23 }+\cdots</math><br>
+
:<math>E(\mathbb{F}_p)=\{(x,y)\in \mathbb{F}_p^2|E: y^2=x^3+x^2+4x+4\}\cup \{(\infty,\infty)\}</math>
*  다음 표는 소수 <math>p</math>에 대하여 <math>p,a_p,c_p</math> 를 나타냄. <math>a_p=c_p</math> 임을 볼 수 있음:<math> \begin{array}{ccc}  p & a_p & c_p \\  2 & 0 & 0 \\  3 & -2 & -2 \\  5 & -1 & -1 \\  7 & 2 & 2 \\  11 & 0 & 0 \\  13 & 2 & 2 \\  17 & -6 & -6 \\  19 & -4 & -4 \\  23 & 6 & 6 \\  29 & 6 & 6 \\  31 & -4 & -4 \\  37 & 2 & 2 \\  41 & 6 & 6 \\  43 & -10 & -10 \\  47 & -6 & -6 \\  53 & -6 & -6 \\  59 & 12 & 12 \\  61 & 2 & 2 \\  67 & 2 & 2 \\  71 & -12 & -12 \end{array} </math><br>
+
:<math>M_p=\#E(\mathbb{F}_p)</math>
 +
:<math>a_p=p+1-M_p</math><br>
 +
* [[모듈라 형식(modular forms)|모듈라 형식]]
 +
:<math>
 +
\begin{aligned}
 +
f(\tau)& ={\eta(2\tau)^2\eta(10\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{2n})^2(1-q^{10n})^2\\
 +
{}&=\sum_{n=1}^{\infty}c_nq^n=q - 2 q^{3 }- q^{5 }+ 2 q^{7 }+ q^{9 }+ 2 q^{13 }+ 2 q^{15 }- 6 q^{17 }- 4 q^{19 }-  4 q^{21 }+ 6 q^{23 }+\cdots
 +
\end{aligned}
 +
</math><
 +
*  다음 표는 소수 <math>p</math>에 대하여 <math>p,a_p,c_p</math> 를 나타냄. <math>a_p=c_p</math> 임을 볼 수 있음
 +
:<math> \begin{array}{c|c|c}  p & a_p & c_p \\  2 & 0 & 0 \\  3 & -2 & -2 \\  5 & -1 & -1 \\  7 & 2 & 2 \\  11 & 0 & 0 \\  13 & 2 & 2 \\  17 & -6 & -6 \\  19 & -4 & -4 \\  23 & 6 & 6 \\  29 & 6 & 6 \\  31 & -4 & -4 \\  37 & 2 & 2 \\  41 & 6 & 6 \\  43 & -10 & -10 \\  47 & -6 & -6 \\  53 & -6 & -6 \\  59 & 12 & 12 \\  61 & 2 & 2 \\  67 & 2 & 2 \\  71 & -12 & -12 \end{array} </math><br>
  
 
   
 
   
44번째 줄: 56번째 줄:
  
 
*  타원곡선 :<math>y^2=x^3-x</math><br>
 
*  타원곡선 :<math>y^2=x^3-x</math><br>
*  모듈라 형식:<math>f(\tau)={\eta(4\tau)^2\eta(8\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{4n})^2(1-q^{8n})^2=\sum_{n=1}^{\infty}c_nq^n=q - 2 q^{5 }-3q^9+6q^{13}+2q^{17}+\cdots</math><br>
+
*  모듈라 형식
 +
:<math>
 +
\begin{aligned}
 +
f(\tau)&={\eta(4\tau)^2\eta(8\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{4n})^2(1-q^{8n})^2\\
 +
{}&=\sum_{n=1}^{\infty}c_nq^n=q - 2 q^{5 }-3q^9+6q^{13}+2q^{17}+\cdots
 +
\end{aligned}
 +
</math><br>
  
* [[타원곡선 y\.b2=x\.b3-x|타원곡선 y^2=x^3-x]] 항목 참조<br>
+
* [[타원곡선 =-x]] 항목 참조<br>
  
 
   
 
   
90번째 줄: 108번째 줄:
  
 
==관련된 항목들==
 
==관련된 항목들==
 
+
* [[페르마의 마지막 정리]]
* [[페르마의 마지막 정리]]<br>
 
  
 
   
 
   
100번째 줄: 117번째 줄:
  
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZWJhMzExOTYtNGM3Yi00ZWU1LWI2MmYtZGZiNzQ1M2JlYTRm&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZWJhMzExOTYtNGM3Yi00ZWU1LWI2MmYtZGZiNzQ1M2JlYTRm&sort=name&layout=list&num=50
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
 
* [[매스매티카 파일 목록]]
 
 
 
 
  
 
 
  
 
 
 
 
116번째 줄: 125번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Taniyama-Shimura-Weil_conjecture
 
* http://en.wikipedia.org/wiki/Taniyama-Shimura-Weil_conjecture
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
  
 
 
  
 
 
 
 
134번째 줄: 137번째 줄:
 
* [http://jlms.oxfordjournals.org/cgi/reprint/s1-43/1/57.pdf How the number of points of an elliptic curve over a fixed prime field varies]<br>
 
* [http://jlms.oxfordjournals.org/cgi/reprint/s1-43/1/57.pdf How the number of points of an elliptic curve over a fixed prime field varies]<br>
 
** B. J. Birch, J. Lond. Math. Soc. 43 (1968), pp. 57--60
 
** B. J. Birch, J. Lond. Math. Soc. 43 (1968), pp. 57--60
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/
 
 
 
 
  
 
 
 
 
147번째 줄: 145번째 줄:
  
 
* Algorithms for modular elliptic curves, J. E. Cremona
 
* Algorithms for modular elliptic curves, J. E. Cremona
 
 
 
 
 
 
 
==블로그==
 
 
*  구글 블로그 검색<br>
 
** [http://blogsearch.google.com/blogsearch?q=%ED%83%80%EB%8B%88%EC%95%BC%EB%A7%88-%EC%8B%9C%EB%AC%B4%EB%9D%BC http://blogsearch.google.com/blogsearch?q=타니야마-시무라]
 

2013년 3월 14일 (목) 05:56 판

개요

  • 유리수체 위에 정의된 타원 곡선의 Hasse-Weil L-함수와 weight 2인 모듈라 형식의 관계
  • 페르마의 마지막 정리의 증명에 사용


Weil의 역 정리

예1. 타원곡선 \(E: y^2=x^3-4x^2+16\)

  • 타원곡선\[E: y^2=x^3-4x^2+16\]
    conductor = 11
  • 유리수체 위의 해의 개수

\[E(\mathbb{F}_p)=\{(x,y)\in \mathbb{F}_p^2|y^2=x^3-4x^2+16\}\cup \{(\infty,\infty)\}\] \[M_p=\#E(\mathbb{F}_p)\] \[a_p=p+1-M_p\]

\[ \begin{aligned} f(\tau)& ={\eta(\tau)^2\eta(11\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{n})^2(1-q^{11n})^2\\ {}& =\sum_{n=1}^{\infty}c_nq^n=q - 2 q^{2 }- q^{3 }+ 2 q^{4 }+ q^{5 }+ 2 q^{6 }- 2 q^{7 }- 2 q^{9 }- 2 q^{10 }+ q^{11 }- 2 q^{12 }+ 4 q^{13 }+ 4 q^{14 }- q^{15 }- 4 q^{16 }- 2 q^{17}+\cdots \end{aligned} \]

  • 다음 표는 소수 \(p\)에 대하여 각각 위에서 정의한 \(p,a_p,c_p\) 를 나타냄. \(a_p=c_p\) 이 일반적으로 성립함을 볼 수 있음

\[\begin{array}{c|c|c} p & {a_p} & c_p \\ 2 & -1 & -2 \\ 3 & -1 & -1 \\ 5 & 1 & 1 \\ 7 & -2 & -2 \\ 11 & 1 & 1 \\ 13 & 4 & 4 \\ 17 & -2 & -2 \\ 19 & 0 & 0 \\ 23 & -1 & -1 \\ 29 & 0 & 0 \\ 31 & 7 & 7 \\ 37 & 3 & 3 \\ 41 & -8 & -8 \\ 43 & -6 & -6 \\ 47 & 8 & 8 \\ 53 & -6 & -6 \\ 59 & 5 & 5 \\ 61 & 12 & 12 \\ 67 & -7 & -7 \\ 71 & -3 & -3 \end{array} \]



예2. 타원곡선 \(E: y^2=x^3+x^2+4x+4\)

  • 타원곡선\[E: y^2=x^3+x^2+4x+4\]
    conductor = 20
  • 유리수체 위의 해의 개수

\[E(\mathbb{F}_p)=\{(x,y)\in \mathbb{F}_p^2|E: y^2=x^3+x^2+4x+4\}\cup \{(\infty,\infty)\}\] \[M_p=\#E(\mathbb{F}_p)\] \[a_p=p+1-M_p\]

\[ \begin{aligned} f(\tau)& ={\eta(2\tau)^2\eta(10\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{2n})^2(1-q^{10n})^2\\ {}&=\sum_{n=1}^{\infty}c_nq^n=q - 2 q^{3 }- q^{5 }+ 2 q^{7 }+ q^{9 }+ 2 q^{13 }+ 2 q^{15 }- 6 q^{17 }- 4 q^{19 }- 4 q^{21 }+ 6 q^{23 }+\cdots \end{aligned} \]<

  • 다음 표는 소수 \(p\)에 대하여 \(p,a_p,c_p\) 를 나타냄. \(a_p=c_p\) 임을 볼 수 있음

\[ \begin{array}{c|c|c} p & a_p & c_p \\ 2 & 0 & 0 \\ 3 & -2 & -2 \\ 5 & -1 & -1 \\ 7 & 2 & 2 \\ 11 & 0 & 0 \\ 13 & 2 & 2 \\ 17 & -6 & -6 \\ 19 & -4 & -4 \\ 23 & 6 & 6 \\ 29 & 6 & 6 \\ 31 & -4 & -4 \\ 37 & 2 & 2 \\ 41 & 6 & 6 \\ 43 & -10 & -10 \\ 47 & -6 & -6 \\ 53 & -6 & -6 \\ 59 & 12 & 12 \\ 61 & 2 & 2 \\ 67 & 2 & 2 \\ 71 & -12 & -12 \end{array} \]



예3

  • 타원곡선 \[y^2=x^3-x\]
  • 모듈라 형식

\[ \begin{aligned} f(\tau)&={\eta(4\tau)^2\eta(8\tau)^2}=q\prod_{n=1}^{\infty} (1-q^{4n})^2(1-q^{8n})^2\\ {}&=\sum_{n=1}^{\infty}c_nq^n=q - 2 q^{5 }-3q^9+6q^{13}+2q^{17}+\cdots \end{aligned} \]



푸리에계수

modularity theorem

  • there exists a finite morphism \(f:X_ 0(N)\to E\) over \mathbb{Q}
    where \(X_ 0(N)\) is the modular curve





역사



메모

  • every elliptic curve over the rational field can be found in the Jacobian variety of the curve which parametrizes elliptic curves with level structure its conductor


관련된 항목들



매스매티카 파일 및 계산 리소스


 

사전 형태의 자료


 

관련논문

 

 

관련도서

  • Algorithms for modular elliptic curves, J. E. Cremona