"오일러-가우스 초기하함수2F1"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
129번째 줄: 129번째 줄:
  
 
 
 
 
 
==수학용어번역==
 
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
 
 
 
144번째 줄: 137번째 줄:
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxWFFlaHc2OVdQLXc/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxWFFlaHc2OVdQLXc/edit
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
  
 
 
  
 
 
 
 
169번째 줄: 154번째 줄:
  
 
==리뷰논문, 에세이, 강의노트==
 
==리뷰논문, 에세이, 강의노트==
 
+
* '''[Nes2002]'''[http://books.google.com/books?id=Up-XxkiTtdsC&pg=PA148&lpg=PA148&dq=On+the+Algebraic+Independence+of+Numbers+Yu.V.+Nesterenko&source=bl&ots=yOVhiH5ukL&sig=x0GqVIluMqw-_Iaf3tXtKxam50Q&hl=ko&ei=KIwRTPiwB4rcNcSE8ccF&sa=X&oi=book_result&ct=result&resnum=3&ved=0CCQQ6AEwAg#v=onepage&q=On%20the%20Algebraic%20Independence%20of%20Numbers%20Yu.V.%20Nesterenko&f=false On the Algebraic Independence of Numbers]<br>
 +
**  Yu.V. Nesterenko, in <em style="">A panorama in number theory, or, The view from Baker's garden</em> (by Alan Baker,Gisbert Wüstholz), 2002<br>
 
* [http://www.jstor.org/stable/2975319 On the Kummer Solutions of the Hypergeometric Equation]<br>
 
* [http://www.jstor.org/stable/2975319 On the Kummer Solutions of the Hypergeometric Equation]<br>
 
** Reese T. Prosser, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543   
 
** Reese T. Prosser, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543   
 
 
* [http://dx.doi.org/10.1070/RM1990v045n01ABEH002325 Ramanujan and hypergeometric and basic hypergeometric series]<br>
 
* [http://dx.doi.org/10.1070/RM1990v045n01ABEH002325 Ramanujan and hypergeometric and basic hypergeometric series]<br>
 
** R Askey 1990 Russ. Math. Surv. 45 37-86
 
** R Askey 1990 Russ. Math. Surv. 45 37-86
188번째 줄: 173번째 줄:
 
* [http://dx.doi.org/10.1016/S0022-314X%2803%2900042-8 Exceptional sets of hypergeometric series]<br>
 
* [http://dx.doi.org/10.1016/S0022-314X%2803%2900042-8 Exceptional sets of hypergeometric series]<br>
 
**  Natália Archinard, Journal of Number Theory Volume 101, Issue 2, August 2003, Pages 244-269<br>
 
**  Natália Archinard, Journal of Number Theory Volume 101, Issue 2, August 2003, Pages 244-269<br>
* '''[Nes2002]'''[http://books.google.com/books?id=Up-XxkiTtdsC&pg=PA148&lpg=PA148&dq=On+the+Algebraic+Independence+of+Numbers+Yu.V.+Nesterenko&source=bl&ots=yOVhiH5ukL&sig=x0GqVIluMqw-_Iaf3tXtKxam50Q&hl=ko&ei=KIwRTPiwB4rcNcSE8ccF&sa=X&oi=book_result&ct=result&resnum=3&ved=0CCQQ6AEwAg#v=onepage&q=On%20the%20Algebraic%20Independence%20of%20Numbers%20Yu.V.%20Nesterenko&f=false On the Algebraic Independence of Numbers]<br>
+
* Thorsley, Michael D., and Marita C. Chidichimo. 2001. “An Asymptotic Expansion for the Hypergeometric Function 2F1(a,b;c;x).” Journal of Mathematical Physics 42 (4) (April 1): 1921–1930. doi:doi:10.1063/1.1353185. http://jmp.aip.org/resource/1/jmapaq/v42/i4/p1921_s1
**  Yu.V. Nesterenko, in <em style="">A panorama in number theory, or, The view from Baker's garden</em> (by Alan Baker,Gisbert Wüstholz), 2002<br>
 
 
 
 
* [http://dx.doi.org/10.1017/S0305004102005923 Special values of the hypergeometric series III]<br>
 
* [http://dx.doi.org/10.1017/S0305004102005923 Special values of the hypergeometric series III]<br>
 
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2002), 133 : 213-222
 
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2002), 133 : 213-222
 
 
* [http://dx.doi.org/10.1017/S0305004101005254 Special values of the hypergeometric series II]<br>
 
* [http://dx.doi.org/10.1017/S0305004101005254 Special values of the hypergeometric series II]<br>
 
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2001), 131 : 309-319
 
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (2001), 131 : 309-319
 
*  Special values of the hypergeometric series<br>
 
*  Special values of the hypergeometric series<br>
 
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (1991)  volume: 109  issue: 2  page: 257
 
** Joyce, G. S.; Zucker, I. J., Mathematical Proceedings of the Cambridge Philosophical Society (1991)  volume: 109  issue: 2  page: 257
 
 
* [http://dx.doi.org/10.1007/BF01393999 Werte hypergeometrischer funktionen]<br>
 
* [http://dx.doi.org/10.1007/BF01393999 Werte hypergeometrischer funktionen]<br>
 
** Jürgen Wolfart, Inventiones Mathematicae Volume 92, Number 1 / 1988년 2월
 
** Jürgen Wolfart, Inventiones Mathematicae Volume 92, Number 1 / 1988년 2월
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://dx.doi.org/10.1007/978-3-7643-8284-1_2
 

2013년 3월 16일 (토) 03:11 판

개요

  • 초기하급수\[\,_2F_1(a,b;c;z)=\sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_nn!}z^n, |z|<1\]
    여기서 \((a)_n=a(a+1)(a+2)...(a+n-1)\)에 대해서는 Pochhammer 기호와 캐츠(Kac) 기호 항목 참조
  • 적분표현\[\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt\]
  • 초기하급수의 해석적확장을 통해 얻어진 함수를 초기하함수라 함
  • 오일러, 가우스, 쿰머, 리만,슈워츠 등의 연구

 

 

초기하급수로 표현되는 함수의 예

 

 

초기하 미분방정식

 

 

 

오일러의 변환 공식

\(_2F_1 (a,b;c;z) = (1-z)^{-a} {}_2F_1 (a, c-b;c ; \frac{z}{z-1})\)

\(_2F_1 (a,b;c;z) = (1-z)^{-b}{}_2F_1(c-a,b;c;\frac{z}{z-1})\)

\(_2F_1 (a,b;c;z) = (1-z)^{c-a-b}{}_2F_1 (c-a, c-b;c ; z)\)

 

(증명)

다음 적분표현을 활용

\(\,_2F_1(a,b;c;z)=\frac{\Gamma(c)}{\Gamma(c-a)\Gamma(a)}\int_0^1t^{a-1}(1-t)^{c-a-1}(1-zt)^{-b}\,dt\)

위의 우변에서 \(t\to 1-t\), \(t\to \frac{t}{1-z-tz}\), \(t\to \frac{1-t}{1-tz}\)의 변환을 이용하면 항등식이 얻어진다. ■

 

 

contiguous 관계

 

 

타원적분과 초기하급수

 

 

모듈라 함수와의 관계

 

 

슈워츠 s-함수

 

 

special values

  • Chu-Vandermonde 공식\[\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}\]
    아래 가우스 공식에서 \(a=-n\)인 경우에 얻어진다
  • 가우스 공식\[\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\]
  • 위의 두 식에 대해서는 초기하 급수의 합공식
  • 렘니스케이트(lemniscate) 곡선과 타원적분\[\frac{\pi}{2}\,_2F_1(\frac{1}{2},\frac{1}{2};1;\frac{1}{2})=K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots\]
  • http://mathworld.wolfram.com/HypergeometricFunction.html\[_2F_1(\frac{1}{3},\frac{2}{3};\frac{5}{6};\frac{27}{32})=\frac{8}{5}\]\[_2F_1(\frac{1}{4},\frac{1}{2};\frac{3}{4};\frac{80}{81})=\frac{9}{5}\]\[_2F_1(\frac{1}{8},\frac{3}{8};\frac{1}{2};\frac{2400}{2401})=\frac{2}{3}\sqrt{7}\]\[_2F_1(\frac{1}{6},\frac{1}{3};\frac{1}{2};\frac{25}{27})=\frac{3}{4}\sqrt{3}\]\[_2F_1(\frac{1}{6},\frac{1}{2};\frac{2}{3};\frac{125}{128})=\frac{4}{3}\sqrt[6]2\]\[_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{1323}{1331})=\frac{3}{4}\sqrt[4]{11}\]\[_2F_1(\frac{1}{12},\frac{5}{12};\frac{1}{2};\frac{121}{125})=\frac{\sqrt[6]{2}\sqrt[4]{15}}{4\sqrt{\pi}}\frac{\Gamma(\frac{1}{3})^3}{\Gamma(\frac{1}{4})^2}(1+\sqrt{3})\]

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

 

 

매스매티카 파일 및 계산 리소스


 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

관련논문