"분수와 순환소수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
2번째 줄: 2번째 줄:
  
 
* 유리수 또는 분수를 십진법으로 전개하면, 순환마디를 얻을 수 있다
 
* 유리수 또는 분수를 십진법으로 전개하면, 순환마디를 얻을 수 있다
*  초등정수론에 대해 공부할 수 있는 소재가 풍부한 좋은 수학 문제<br>
+
*  초등정수론에 대해 공부할 수 있는 소재가 풍부한 좋은 수학 문제
 
** 순환마디의 길이는 어떻게 결정되는가의 문제 등
 
** 순환마디의 길이는 어떻게 결정되는가의 문제 등
*  수학자 가우스가 소년 시절에 이에 대하여 연구하였다<br>
+
*  수학자 가우스가 소년 시절에 이에 대하여 연구하였다
 
** [[가우스와 순환소수]]
 
** [[가우스와 순환소수]]
 
* [[간단한 분수의 순환소수 전개 목록|1/n 의 순환소수 전개 목록]]을 함께 참고
 
* [[간단한 분수의 순환소수 전개 목록|1/n 의 순환소수 전개 목록]]을 함께 참고
14번째 줄: 14번째 줄:
 
==142857의 여러가지 성질==
 
==142857의 여러가지 성질==
  
* 142857 X 1 = 142857, 142857 X 2 = 285714, 142857 X 3 = 428571<br> 142857 X 4 = 571428, 142857 X 5 = 714285, 142857 X 6 = 857142
+
* 142857 X 1 = 142857, 142857 X 2 = 285714, 142857 X 3 = 428571 142857 X 4 = 571428, 142857 X 5 = 714285, 142857 X 6 = 857142
 
* 142857 X 7 = 999999
 
* 142857 X 7 = 999999
 
* 142 + 857 = 999
 
* 142 + 857 = 999
 
* 14 + 28 + 57 = 99
 
* 14 + 28 + 57 = 99
*  이 성질은 다음 순환소수 전개를 통하여 이해할 수 있다:<math>1/7=0.142857142857\cdots</math><br>
+
*  이 성질은 다음 순환소수 전개를 통하여 이해할 수 있다:<math>1/7=0.142857142857\cdots</math>
 
* [['142857의 신비' 해설|142857의 성질과 해설]]
 
* [['142857의 신비' 해설|142857의 성질과 해설]]
  
44번째 줄: 44번째 줄:
  
  
*  주목해서 보아야 하는 것은 위에 나타는 몫 142857 이 아니라, 나누기의 중간 과정에서 7로 나눈 나머지로 등장하는 빨간 줄을 친 수들이다. <br><br>1,3,2,6,4,5, 그리고 1<br>
+
*  주목해서 보아야 하는 것은 위에 나타는 몫 142857 이 아니라, 나누기의 중간 과정에서 7로 나눈 나머지로 등장하는 빨간 줄을 친 수들이다. 1,3,2,6,4,5, 그리고 1
 
* 빨간 부분의 숫자가 1로 시작하여, 3,2,6,4,5 를 지나서 1이 다시 나오는 순간, 위의 몫 부분에서는 142857이 다시 반복되게 됨을 관찰할 수 있음
 
* 빨간 부분의 숫자가 1로 시작하여, 3,2,6,4,5 를 지나서 1이 다시 나오는 순간, 위의 몫 부분에서는 142857이 다시 반복되게 됨을 관찰할 수 있음
 
* 따라서 언제 다시 빨간 1이 다시 나오는가가, 순환마디의 길이를 결정하게 된다.
 
* 따라서 언제 다시 빨간 1이 다시 나오는가가, 순환마디의 길이를 결정하게 된다.
81번째 줄: 81번째 줄:
 
==== 하위페이지 ====
 
==== 하위페이지 ====
  
* [[분수와 순환소수]]<br>
+
* [[분수와 순환소수]]
** [[간단한 분수의 순환소수 전개 목록|1/n 의 순환소수 전개 목록]]<br>
+
** [[간단한 분수의 순환소수 전개 목록|1/n 의 순환소수 전개 목록]]
** [[cyclic numbers]]<br>
+
** [[cyclic numbers]]
** [[가우스와 순환소수]]<br>
+
** [[가우스와 순환소수]]
** [[미디의 정리(Midy's theorem)]]<br>
+
** [[미디의 정리(Midy's theorem)]]
** [[순환소수에 대한 아틴의 추측]]<br>
+
** [[순환소수에 대한 아틴의 추측]]
** [[순환소수와 class number]]<br>
+
** [[순환소수와 class number]]
 
 
 
 
 
 
  
 
   
 
   
 
==많이 나오는 질문==
 
 
*  네이버 지식인<br>
 
** [http://kin.search.naver.com/search.naver?where=kin_qna&query=%EC%88%9C%ED%99%98%EC%86%8C%EC%88%98 http://kin.search.naver.com/search.naver?where=kin_qna&query=순환소수]
 
  
 
   
 
   
107번째 줄: 98번째 줄:
  
 
* 유리수
 
* 유리수
*  정수<br>
+
*  정수
 
** 약수와 배수
 
** 약수와 배수
 
* [[합동식 (모듈로 modulo 연산)|합동식]], 잉여류, [[원시근(primitive root)|원시근]], [[이차잉여의 상호법칙|이차잉여]], [[정수계수 이변수 이차형식(binary integral quadratic forms)|이차형식]]
 
* [[합동식 (모듈로 modulo 연산)|합동식]], 잉여류, [[원시근(primitive root)|원시근]], [[이차잉여의 상호법칙|이차잉여]], [[정수계수 이변수 이차형식(binary integral quadratic forms)|이차형식]]
* [[초등정수론]]<br>
+
* [[초등정수론]]
 
** 오일러-페르마 정리
 
** 오일러-페르마 정리
* [[추상대수학]]<br>
+
* [[추상대수학]]
 
** 순환군
 
** 순환군
  
124번째 줄: 115번째 줄:
 
* [[원시근(primitive root)]]
 
* [[원시근(primitive root)]]
 
* [[p진해석학(p-adic analysis)|p-adic analysis]]
 
* [[p진해석학(p-adic analysis)|p-adic analysis]]
 
 
 
 
 
==수학용어번역==
 
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
   
 
   
142번째 줄: 122번째 줄:
 
==사전 형태의 자료==
 
==사전 형태의 자료==
  
* http://ko.wikipedia.org/wiki/
 
 
* http://en.wikipedia.org/wiki/decimal_fraction
 
* http://en.wikipedia.org/wiki/decimal_fraction
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** [http://www.research.att.com/%7Enjas/sequences/?q=primitive+root http://www.research.att.com/~njas/sequences/?q=primitive+root]
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
  
 
   
 
   
154번째 줄: 128번째 줄:
 
==관련도서==
 
==관련도서==
  
*  Higher mathematics from elementary point of view<br>
+
*  Higher mathematics from elementary point of view
 
** Hans Rademacher
 
** Hans Rademacher
 
** Chapter 5. Decimal Fractions ([[1979584/attachments/1370998|pdf]])
 
** Chapter 5. Decimal Fractions ([[1979584/attachments/1370998|pdf]])
165번째 줄: 139번째 줄:
  
 
*  Lawrence Brenton , [http://mathdl.maa.org/mathDL/22/?pa=content&sa=viewDocument&nodeId=3329&bodyId=3682 Remainder Wheels and Group Theory] College Mathematics Journal, vol. 39, no. 2, March 2008, pp. 129-135
 
*  Lawrence Brenton , [http://mathdl.maa.org/mathDL/22/?pa=content&sa=viewDocument&nodeId=3329&bodyId=3682 Remainder Wheels and Group Theory] College Mathematics Journal, vol. 39, no. 2, March 2008, pp. 129-135
* [http://www.jstor.org/stable/3026586 The Alluring Lore of Cyclic Numbers]<br>
+
* [http://www.jstor.org/stable/3026586 The Alluring Lore of Cyclic Numbers]
 
** Michael W. Ecker, <cite>The Two-Year College Mathematics Journal</cite>, Vol. 14, No. 2 (Mar., 1983), pp. 105-109
 
** Michael W. Ecker, <cite>The Two-Year College Mathematics Journal</cite>, Vol. 14, No. 2 (Mar., 1983), pp. 105-109
* [[#%20Fractions%20with%20Cycling%20Digit%20Patterns%20#%20Dan%20Kalman%20#%20The%20College%20Mathematics%20Journal,%20Vol.%2027,%20No.%202%20%28Mar.,%201996%29,%20pp.%20109-115%20|Fractions with Cycling Digit Patterns]]<br>
+
* [[#%20Fractions%20with%20Cycling%20Digit%20Patterns%20#%20Dan%20Kalman%20#%20The%20College%20Mathematics%20Journal,%20Vol.%2027,%20No.%202%20%28Mar.,%201996%29,%20pp.%20109-115%20|Fractions with Cycling Digit Patterns]]
 
** Dan Kalman, <cite>The College Mathematics Journal</cite>, Vol. 27, No. 2 (Mar., 1996), pp. 109-115
 
** Dan Kalman, <cite>The College Mathematics Journal</cite>, Vol. 27, No. 2 (Mar., 1996), pp. 109-115
* [http://www.jstor.org/stable/2686394 Repeating Decimals]<br>
+
* [http://www.jstor.org/stable/2686394 Repeating Decimals]
 
** W. G. Leavitt, <cite>The College Mathematics Journal</cite>, Vol. 15, No. 4 (Sep., 1984), pp. 299-308
 
** W. G. Leavitt, <cite>The College Mathematics Journal</cite>, Vol. 15, No. 4 (Sep., 1984), pp. 299-308
  
178번째 줄: 152번째 줄:
 
==관련기사==
 
==관련기사==
  
*  네이버 뉴스 검색 (키워드 수정)<br>
+
*  네이버 뉴스 검색 (키워드 수정)
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EC%88%9C%ED%99%98%EC%86%8C%EC%88%98 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=순환소수]
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%EC%88%9C%ED%99%98%EC%86%8C%EC%88%98 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=순환소수]
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=142857
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=142857
188번째 줄: 162번째 줄:
 
==블로그==
 
==블로그==
  
*  142857의 신비 (피타고라스의 창)<br>
+
*  142857의 신비 (피타고라스의 창)
 
** [http://bomber0.byus.net/index.php/2008/09/02/726 142857와 군론의 만남(1)]
 
** [http://bomber0.byus.net/index.php/2008/09/02/726 142857와 군론의 만남(1)]
 
** [http://bomber0.byus.net/index.php/2008/09/04/729 142857와 군론의 만남(2)]
 
** [http://bomber0.byus.net/index.php/2008/09/04/729 142857와 군론의 만남(2)]

2014년 7월 6일 (일) 04:41 판

개요

  • 유리수 또는 분수를 십진법으로 전개하면, 순환마디를 얻을 수 있다
  • 초등정수론에 대해 공부할 수 있는 소재가 풍부한 좋은 수학 문제
    • 순환마디의 길이는 어떻게 결정되는가의 문제 등
  • 수학자 가우스가 소년 시절에 이에 대하여 연구하였다
  • 1/n 의 순환소수 전개 목록을 함께 참고



142857의 여러가지 성질

  • 142857 X 1 = 142857, 142857 X 2 = 285714, 142857 X 3 = 428571 142857 X 4 = 571428, 142857 X 5 = 714285, 142857 X 6 = 857142
  • 142857 X 7 = 999999
  • 142 + 857 = 999
  • 14 + 28 + 57 = 99
  • 이 성질은 다음 순환소수 전개를 통하여 이해할 수 있다\[1/7=0.142857142857\cdots\]
  • 142857의 성질과 해설



순환마디의 길이

  • \(1/n\)의 순환마디의 길이는 어떻게 결정될까?
  • n이 2와 5를 나누지 않는 경우를 생각하자
  • \(10^k \equiv 1 \pmod n\) 를 만족시키는 가장 작은 자연수 \(k\)가 순환 마디의 길이가 된다
  • 군론의 언어를 사용하면 원소 10의 군 \((\mathbb{Z}/n\mathbb{Z})^\times\) 에서의 order가 바로 \(1/n\)의 순환마디의 길이가 됨
  • 오일러의 totient 함수 의 순환마디의 길이는 \(\varphi(n)\) 를 나누게 된다
  • 군 \((\mathbb{Z}/n\mathbb{Z})^\times\)의 정의에 대해서는 합동식과 군론 참조



순환마디를 얻는 과정의 이해

  • \(1/7=0.142857142857\cdots\)를 얻는 나누기 과정


  • 주목해서 보아야 하는 것은 위에 나타는 몫 142857 이 아니라, 나누기의 중간 과정에서 7로 나눈 나머지로 등장하는 빨간 줄을 친 수들이다. 1,3,2,6,4,5, 그리고 1
  • 빨간 부분의 숫자가 1로 시작하여, 3,2,6,4,5 를 지나서 1이 다시 나오는 순간, 위의 몫 부분에서는 142857이 다시 반복되게 됨을 관찰할 수 있음
  • 따라서 언제 다시 빨간 1이 다시 나오는가가, 순환마디의 길이를 결정하게 된다.
  • 빨간 줄 친 숫자들, 1,3,2,6,4,5, 1 가 얻어진 과정의 관찰
  • 나누기 과정을 유심히 들여다 보면, 다음과 같은 것을 발견

\(10^0 \equiv 1 \pmod 7\)

\(10^1 \equiv 10 \equiv 3 \pmod 7\)

\(10^2 \equiv 30 \equiv 2 \pmod 7\)

\(10^3 \equiv 20 \equiv 6 \pmod 7\)

\(10^4 \equiv 60 \equiv 4 \pmod 7\)

\(10^5 \equiv 40 \equiv 5 \pmod 7\)

\(10^6 \equiv 50 \equiv 1 \pmod 7\)

  • 1,3,2,6,4,5, 1 은 바로 1, 10, 100, 1000, 10000, 100000, 1000000 들을 7로 나눈 나머지이다



cyclic numbers



하위페이지




관련된 고교수학 또는 대학수학



관련된 항목들



사전 형태의 자료


관련도서

  • Higher mathematics from elementary point of view
    • Hans Rademacher
    • Chapter 5. Decimal Fractions (pdf)



관련논문



관련기사



블로그