"자코비 다항식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
* $\alpha, \beta$를 갖는 직교다항식 $P_{n}^{(\alpha\,\beta)}(x)$
+
* $n\in \mathbb{Z}_{\geq 0}, \alpha, \beta$를 매개변수로 갖는 직교다항식 $P_{n}^{(\alpha\,\beta)}(x)$
 
* 다양한 직교다항식을 특수한 경우로 가짐
 
* 다양한 직교다항식을 특수한 경우로 가짐
 
   
 
   

2014년 9월 29일 (월) 18:13 판

개요

  • $n\in \mathbb{Z}_{\geq 0}, \alpha, \beta$를 매개변수로 갖는 직교다항식 $P_{n}^{(\alpha\,\beta)}(x)$
  • 다양한 직교다항식을 특수한 경우로 가짐


정의

  • 초기하급수(Hypergeometric series)를 통해 정의된다\[P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!} \,_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\frac{1-z}{2}\right)\]
  • 다항식표현\[P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+n+1)}{n!\Gamma (\alpha+\beta+n+1)} \sum_{m=0}^n {n\choose m} \frac{\Gamma (\alpha + \beta + n + m + 1)}{\Gamma (\alpha + m + 1)} \left(\frac{z-1}{2}\right)^m\]


특수한 경우

$$ C_n^{(\lambda )}(x)=\frac{(2 \lambda)_{n}}{\left(\lambda +\frac{1}{2}\right)_n}P_n^{\left(\lambda -\frac{1}{2},\lambda -\frac{1}{2}\right)}(x) $$

$$ T_n(x)=\frac{2^{2 n} (n!)^2 P_n^{\left(-\frac{1}{2},-\frac{1}{2}\right)}(x)}{(2 n)!} $$ $$ U_n(x)=\frac{2^{2 n+1} ((n+1)!)^2 P_n^{\left(\frac{1}{2},\frac{1}{2}\right)}(x)}{(2 n+2)!} $$

$$ P_n(x)=P_n^{(0,0)}(x) $$

$$ L_n^{\alpha }(x)=\lim_{\beta \to \infty } \, P_n^{(\alpha ,\beta )}\left(1-\frac{2 x}{\beta }\right) $$

로드리게스 공식

  • 다음이 성립한다

$$ (1-x)^{\alpha } (1+x)^{\beta } P_n^{(\alpha ,\beta )}(x)=\frac{(-1)^n}{2^n n!}\frac{d^n}{dx^n}\left[\left((1-x)^{\alpha +n} (1+x)^{\beta +n}\right)\right] \label{RF} $$


미분방정식

  • 자코비 다항식은 다음을 만족시킨다\[(1-x^2)y'' + ( \beta-\alpha - (\alpha + \beta + 2)x )y'+ n(n+\alpha+\beta+1) y = 0\]



직교성

  • weight함수와 구간

\[w(x) = (1-x)^{\alpha} (1+x)^{\beta}, x\in [-1,1]\]

  • 다음이 성립한다

$$ \int_{-1}^1(1-x)^{\alpha} (1+x)^{\beta}\,dx=2^{\alpha+\beta+1}\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)} $$

(증명)

$t=(1-x)/2$로 치환하면, $$ \begin{aligned} \int_{-1}^1(1-x)^{\alpha} (1+x)^{\beta}\,dx=&\int_0^1 2^{\alpha+\beta+1}t^{\alpha}(1-t)^{\beta}\, dt \\ =&2^{\alpha+\beta+1}B(\alpha+1,\beta+1)\\ =&2^{\alpha+\beta+1}\frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)} \end{aligned} $$ 여기서 $B(x,y)$는 오일러 베타적분(베타함수)


(정리)
  • $m,n\in \mathbb{Z}_{\geq 0}$에 대하여,

\[\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx= \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}\]

  • \(\alpha=1/2,\beta=1/2,m=n=2\)인 경우

\[\int_{-1}^1 (1-x)^{\frac{1}{2}} (1+x)^{\frac{1}{2}} P_2^{(\frac{1}{2},\frac{1}{2})} (x)P_2^{(\frac{1}{2},\frac{1}{2})} (x) \; dx= \frac{4}{6} \frac{\Gamma(3+\frac{1}{2})\Gamma(3+\frac{1}{2})}{\Gamma(4)2!}=\frac{4(\frac{15\sqrt{\pi}}{8})^2}{12\cdot 3!}=\frac{25\pi}{128}\]

증명

$P_m^{\alpha,\beta}$는 $m$차 다항식이므로, 다음과 같이 쓸 수 있다 $$ P_m^{(\alpha,\beta)} (x)=\sum_{k=0}^m c_{mk}x^k $$ 이 때, $c_{mm}=$ 직교성은 \ref{RF}과 부분적분을 이용하여 증명할 수 있다. $m\leq n$이라 가정하자. $$ \begin{aligned} \int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \, dx=&\sum_{k=0}^m c_{mk}\frac{(-1)^n}{2^nn!}\int_{-1}^1x^k\frac{d^n}{dx^n}\left[(1-x)^{\alpha+n} (1+x)^{\beta+n}\right]\,dx\\ =&\sum_{k=0}^m\frac{ c_{mk}}{2^n}\int_{-1}^1\left[(1-x)^{\alpha+n} (1+x)^{\beta+n}\right]\,dx\\ =&\delta_{nm}\frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \end{aligned} $$ ■

테이블

$$ \begin{array}{c|c} n & P_n^{(\alpha ,\beta )}(x) \\ \hline 0 & 1 \\ 1 & \frac{1}{2} (\alpha -\beta +z (\alpha +\beta +2)) \\ 2 & \frac{1}{2} (\alpha +1) (\alpha +2)+\frac{1}{8} (z-1)^2 (\alpha +\beta +3) (\alpha +\beta +4)+\frac{1}{2} (\alpha +2) (z-1) (\alpha +\beta +3) \\ 3 & \frac{1}{6} (\alpha +1) (\alpha +2) (\alpha +3)+\frac{1}{48} (z-1)^3 (\alpha +\beta +4) (\alpha +\beta +5) (\alpha +\beta +6)+\frac{1}{8} (\alpha +3) (z-1)^2 (\alpha +\beta +4) (\alpha +\beta +5)+\frac{1}{4} (\alpha +2) (\alpha +3) (z-1) (\alpha +\beta +4) \end{array} $$



메모

관련된 항목들

매스매티카 파일 및 계산 리소스


사전 형태의 자료


리뷰, 에세이, 강의노트