"J-불변량과 모듈라 다항식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
6번째 줄: 6번째 줄:
  
 
==예==
 
==예==
 +
* $n=1$
 +
$$
 +
\Phi_1(x,y)=x-y
 +
$$
 
* $n=2$
 
* $n=2$
 
$$
 
$$
18번째 줄: 22번째 줄:
 
\end{aligned}
 
\end{aligned}
 
$$
 
$$
 +
* $n=4$
 +
$$
 +
\Phi_4(x,y)=x^6+y^6+\dots
 +
$$
 +
 +
 +
==class number relation==
 +
* $m>0$ : int
 +
* $\exists$ $\phi_m(x,y)\in{\mathbb{Z}}[x,y]$ such that
 +
$$\prod_{ad=m,a,d>0,0\leq b \leq d-1}(x-j(\frac{a\tau+b}{d}))=\phi_m(x,j(\tau))$$
 +
* $\phi_m(j(m\tau),j(\tau))=0$
 +
* $\phi_{m}=\prod_{n^2|m}\Phi_{m/n^2}$
 +
* as a poly. in $x$, $\deg \phi_m(x,y)=\sigma_1(m)=\sum_{d|m}d$
 +
 +
;examples
 +
* $m=1$, $\phi_1(x,y)=\Phi_1(x,y)$
 +
* $m=2$, $\phi_2(x,y)=\Phi_2(x,y)$
 +
* $m=3$, $\phi_3(x,y)=\Phi_3(x,y)$
 +
* $m=4$, $\phi_4(x,y) = \Phi_1(x,y)\Phi_4(x,y) = x^7+\dots$
 +
* interested in $F_m(x):=\phi_m(x,x)\in \Z[x]$ :
 +
$$
 +
F_1(x)=0
 +
$$
 +
$$
 +
F_2(x) = -(x-1728)(x+3375)^2(x-8000) = -H_{4}(x)H_{7}(x)^2H_{8}(x)
 +
$$
 +
$$
 +
F_3(x) = -x(x-8000)^2  (x+32768)^2(x-54000)  = - H_3(x)H_{8}(x)^2H_{11}(x)^2H_{12}(x)
 +
$$
 +
 +
* $F_m(x)\neq 0$ if $m$ is not a perfect square
 +
 +
* Hurwitz calculated its degree :
 +
$$\deg F_m(x)= \sum_{d|m}\max(d,m/d)$$
 +
 +
* Kronecker : explicit factor. in class poly:
 +
$$
 +
F_m(x) =\pm \prod_{t\in \Z,t^2 \leq 4m}\mathcal{H}_{4m − t^2}(x)
 +
$$
 +
where
 +
$$
 +
\mathcal{H}_d(x) = \prod_{Q\in \mathcal{Q}_d/\Gamma}(x-j(\tau_Q))^{1/w_{Q}}
 +
$$
 +
* can be also written as a product of $H_d(x)$
 +
* Let $h_d$ be the Hurwitz-Kronecer class number ([[후르비츠-크로네커 유수]])
 +
\begin{array}{c|ccccccccccccccccccccccccc}
 +
d & 0 & 3 & 4 & 7 & 8 & 11 & 12 & 15 & 16 & 19 & 20 & 23 & 24 & 27 & 28 & 31 & 32 & 35 & 36 & 39 & 40 & 43 & 44 & 47 & 48 \\
 +
\hline
 +
12 h_{d} & -1 & 4 & 6 & 12 & 12 & 12 & 16 & 24 & 18 & 12 & 24 & 36 & 24 & 16 & 24 & 36 & 36 & 24 & 30 & 48 & 24 & 12 & 48 & 60 & 40 \\
 +
\end{array}
 +
 +
;thm (class number relation ver. 1)
 +
For $m$ is not a perfect sq., define
 +
$$
 +
G(m)= \sum_{t\in \Z,t^2 \leq 4m}h_{4m − t^2}
 +
$$
 +
Then
 +
$$
 +
G(m)=\sum_{d|m}\max(d,m/d)
 +
$$
 +
 +
* this is surprising ; class numbers with different disc. have a linear relation!
 +
* geometric interpretation : $\deg F_m(x)$ = number of intersections of two curves $\phi_1(x,y)=x-y=0$ and $\phi_m(x,y)=0$ in $\C^2$
 +
* Hurwitz computed this for pairs $\phi_{m_1}$ and $\phi_{m_2}$
 +
 +
;thm (class number relation ver. 2)
 +
Assume that $m=m_1m_2$ is not a perfect square. Let $A=\C[X,Y]/\langle \phi_{m_1},\phi_{m_2}\rangle$. Then
 +
$$
 +
|A|=\sum_{n|\gcd(m_1,m_2)}nG(m/n^2)
 +
$$
 +
 +
 +
 +
===테이블===
 +
\begin{array}{c|cccccccccc}
 +
\left\{m_1,m_2\right\} & \{2,3\} & \{2,4\} & \{2,5\} & \{2,6\} & \{2,7\} & \{2,9\} & \{3,4\} & \{3,5\} & \{3,6\} & \{3,7\} \\
 +
\hline
 +
\sum_{n|\gcd(m_1,m_2)}nG(m_1m_2/n^2) & 18 & 32 & 30 & 56 & 42 & 66 & 44 & 40 & 78 & 56 \\
 +
\end{array}
 +
 +
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==

2019년 3월 26일 (화) 18:29 판

개요

Z}}[x,y]$이 존재하며, 이 때 차수는 $x,y$ 각각에 대하여 $\psi(n)=n\prod_{p|n}(1+1/p)$로 주어진다


  • $n=1$

$$ \Phi_1(x,y)=x-y $$

  • $n=2$

$$ \Phi_2(x,y)=x^3+y^3-x^2 y^2+1488 (x^2 y + x y^2)-162000 (x^2+y^2) +40773375 x y+8748000000 (x + y)-157464000000000 $$

  • $n=3$

$$ \begin{aligned} \Phi_3(x,y) &=x^4+y^4-x^3 y^3+36864000 \left(x^3+y^3\right)-1069956 \left(x^3 y+x y^3\right)+2587918086 x^2 y^2 \\ &+452984832000000 \left(x^2+y^2\right)+8900222976000 \left(x^2 y+x y^2\right)+2232 \left(x^3 y^2+x^2 y^3\right) \\ &-770845966336000000 x y+1855425871872000000000 (x+y) \end{aligned} $$

  • $n=4$

$$ \Phi_4(x,y)=x^6+y^6+\dots $$


class number relation

  • $m>0$ : int
  • $\exists$ $\phi_m(x,y)\in{\mathbb{Z}}[x,y]$ such that

$$\prod_{ad=m,a,d>0,0\leq b \leq d-1}(x-j(\frac{a\tau+b}{d}))=\phi_m(x,j(\tau))$$

  • $\phi_m(j(m\tau),j(\tau))=0$
  • $\phi_{m}=\prod_{n^2|m}\Phi_{m/n^2}$
  • as a poly. in $x$, $\deg \phi_m(x,y)=\sigma_1(m)=\sum_{d|m}d$
examples
  • $m=1$, $\phi_1(x,y)=\Phi_1(x,y)$
  • $m=2$, $\phi_2(x,y)=\Phi_2(x,y)$
  • $m=3$, $\phi_3(x,y)=\Phi_3(x,y)$
  • $m=4$, $\phi_4(x,y) = \Phi_1(x,y)\Phi_4(x,y) = x^7+\dots$
  • interested in $F_m(x):=\phi_m(x,x)\in \Z[x]$ :

$$ F_1(x)=0 $$ $$ F_2(x) = -(x-1728)(x+3375)^2(x-8000) = -H_{4}(x)H_{7}(x)^2H_{8}(x) $$ $$ F_3(x) = -x(x-8000)^2 (x+32768)^2(x-54000) = - H_3(x)H_{8}(x)^2H_{11}(x)^2H_{12}(x) $$

  • $F_m(x)\neq 0$ if $m$ is not a perfect square
  • Hurwitz calculated its degree :

$$\deg F_m(x)= \sum_{d|m}\max(d,m/d)$$

  • Kronecker : explicit factor. in class poly:

$$ F_m(x) =\pm \prod_{t\in \Z,t^2 \leq 4m}\mathcal{H}_{4m − t^2}(x) $$ where $$ \mathcal{H}_d(x) = \prod_{Q\in \mathcal{Q}_d/\Gamma}(x-j(\tau_Q))^{1/w_{Q}} $$

\begin{array}{c|ccccccccccccccccccccccccc} d & 0 & 3 & 4 & 7 & 8 & 11 & 12 & 15 & 16 & 19 & 20 & 23 & 24 & 27 & 28 & 31 & 32 & 35 & 36 & 39 & 40 & 43 & 44 & 47 & 48 \\ \hline 12 h_{d} & -1 & 4 & 6 & 12 & 12 & 12 & 16 & 24 & 18 & 12 & 24 & 36 & 24 & 16 & 24 & 36 & 36 & 24 & 30 & 48 & 24 & 12 & 48 & 60 & 40 \\ \end{array}

thm (class number relation ver. 1)

For $m$ is not a perfect sq., define $$ G(m)= \sum_{t\in \Z,t^2 \leq 4m}h_{4m − t^2} $$ Then $$ G(m)=\sum_{d|m}\max(d,m/d) $$

  • this is surprising ; class numbers with different disc. have a linear relation!
  • geometric interpretation : $\deg F_m(x)$ = number of intersections of two curves $\phi_1(x,y)=x-y=0$ and $\phi_m(x,y)=0$ in $\C^2$
  • Hurwitz computed this for pairs $\phi_{m_1}$ and $\phi_{m_2}$
thm (class number relation ver. 2)

Assume that $m=m_1m_2$ is not a perfect square. Let $A=\C[X,Y]/\langle \phi_{m_1},\phi_{m_2}\rangle$. Then $$ |A|=\sum_{n|\gcd(m_1,m_2)}nG(m/n^2) $$


테이블

\begin{array}{c|cccccccccc} \left\{m_1,m_2\right\} & \{2,3\} & \{2,4\} & \{2,5\} & \{2,6\} & \{2,7\} & \{2,9\} & \{3,4\} & \{3,5\} & \{3,6\} & \{3,7\} \\ \hline \sum_{n|\gcd(m_1,m_2)}nG(m_1m_2/n^2) & 18 & 32 & 30 & 56 & 42 & 66 & 44 & 40 & 78 & 56 \\ \end{array}


매스매티카 파일 및 계산 리소스

관련도서


관련논문