"파울리 행렬"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
 
123번째 줄: 123번째 줄:
 
* ID :  [https://www.wikidata.org/wiki/Q336233 Q336233]
 
* ID :  [https://www.wikidata.org/wiki/Q336233 Q336233]
 
===Spacy 패턴 목록===
 
===Spacy 패턴 목록===
# [{'LOWER': 'pauli'}, {'LEMMA': 'matrix'}]
+
* [{'LOWER': 'pauli'}, {'LEMMA': 'matrix'}]

2020년 12월 27일 (일) 18:15 기준 최신판

개요

  • 전자의 스핀과 전자기장의 상호작용을 기술하기 위한 파울리 방정식 을 찾는 과정에서 등장
  • 파울리 행렬

\[\sigma_1 = \sigma_x = \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} \]\[\sigma_2 = \sigma_y = \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix} \]\[\sigma_3 = \sigma_z = \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\]



교환자 관계식

  • \([\sigma _i,\sigma _j]=2i \epsilon _{i j k}\sigma _k\)


anti-commutator

  • \(\left\{\sigma _i,\sigma _j\right\}=2\delta _{i j}\)
  • \(\left\{I,\sigma _1,\sigma _2,\sigma _3,iI,i \sigma _1,i \sigma _2,i \sigma _3\right\}\) 를 기저로 갖는 클리포드 대수를 얻는다
  • 3차원 유클리드 공간 \(E_{3}\)의 클리포드 대수\(C(E_{3})\)와 동형이다


사원수와의 관게



sl(2)

  • raising and lowering 연산자

\[\sigma_{\pm}=\frac{1}{2}(\sigma_{x}\pm i\sigma_{y})\] \[\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}\] \[\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}\] \[[\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}\]


여러가지 관계식

\[ \sigma_{+}^2=\sigma_{-}^2=0 \]

\[ \{\sigma_{+},\sigma_{-}\}=1 \]

\[ \sigma_{+}\sigma_{-}=(1+\sigma_z)/2 \]

\[ \exp(i \frac{\pi}{2}\sigma_z)=i\sigma_z \]


스핀



역사



관련된 항목들


매스매티카 파일 및 계산 리소스

노트

말뭉치

  1. the Pauli matrices form a complete system of second-order matrices by which an arbitrary linear operator (matrix) of dimension 2 can be expanded.[1]
  2. In May 1927 Pauli published "Zur Quantenmechanik des magnetischen Elektrons", in which he introduced "Pauli matrices".[2]
  3. , it is often more convenient to generate it from a basis formed by the Pauli matrices augmented by the unit matrix.[3]
  4. This relationship between the Pauli matrices and SU(2) can be explored further, as can be seen from the following simple example.[4]
  5. As the quaternions of unit norm is group-isomorphic to SU(2), this gives yet another way of describing SU(2) via the Pauli matrices.[4]
  6. In quantum mechanics, each Pauli matrix represents an observable describing the spin of a spin ½ particle in the three spatial directions.[4]
  7. The mathematical significance of this operator is seen by noticing that, from the properties of the Pauli matrices, all even powers of n˙ σ are equal to 1, and all odd powers are equal to n˙ σ.[5]
  8. Hermitian operators represent observables in quantum mechanics, so the Pauli matrices span the space of observables of the 2-dimensional complex Hilbert space.[6]
  9. In quantum mechanics, each Pauli matrix is related to an angular momentum operator that corresponds to an observable describing the spin of a spin ½ particle, in each of the three spatial directions.[6]
  10. Hence the Pauli matrices or the Sigma matrices operating on these spinors have to be 4 × 4 matrices.[6]
  11. The Pauli matrices, also called the Pauli spin matrices, are complex matrices that arise in Pauli's treatment of spin in quantum mechanics.[7]
  12. These matrices X, Y, and Z are called the Pauli matrices.[8]
  13. Pauli matrices will be discussed in greater detail in a later chapter, as they play a key role in quantum computing and quantum communication.[8]
  14. In the language of quantum mechanics, hermitian matrices are observables, so the Pauli matrices span the space of observables of the 2-dimensional complex Hilbert space.[9]
  15. In quantum mechanics, each Pauli matrix is related to an operator that corresponds to an observable describing the spin of a spin ½ particle, in each of the three spatial directions.[9]
  16. It is possible to form generalizations of the Pauli matrices in order to describe higher spin systems in three spatial dimensions.[9]
  17. For arbitrarily large j, the Pauli matrices can be calculated using the ladder operators.[9]
  18. Demonstrate that the three Pauli matrices given in below are unitary.[10]
  19. The rotation performed by a Pauli matrix occurs along the X, Y, or Z axis, repectively, of our visualization.[11]
  20. It can be generalized to the arbitrary number of dimensions, if we replace Pauli matrices with generalized Gell-Mann matrices .[12]
  21. Convert to a list or array of Pauli matrices.[13]
  22. This is a lazy iterator that converts each row into the Pauli matrix representation only as it is used.[13]
  23. I have so far misrepresented the term Pauli matrices.[14]
  24. The Pauli matrices in this form are not the exact equivalent of quaternions this is because, if we square them, we get +1 and not -1.[14]
  25. In this form Pauli matrices have different properties, they don't form a normed division algebra.[14]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'pauli'}, {'LEMMA': 'matrix'}]