"열방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
151번째 줄: 151번째 줄:
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
 +
== 메타데이터 ==
 +
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q6510488 Q6510488]

2020년 12월 28일 (월) 05:19 판

개요

  • 열의 전달을 기술하는 편미분방정식\[\frac{\partial u}{\partial t} -\beta\left(\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2u}{\partial z^2}\right)=0\]
  • 일반적으로 라플라시안을 사용하여 다음과 같이 표현\[\frac{\partial u}{\partial t} = \beta\nabla^2 u\]
  • 일차원 열방정식



유한한 길이의 막대에서의 경계-초기 조건 문제 : 변수분리를 통한 해

  • 경계조건 (양 끝점의 온도는 고정)\[ t>0\] 일 때, \(u(0,t)=u(L,t)\)
  • 초기조건 (\(t=0\)) 에서의 온도분포\[u(x,0)=f(x)\]

\(u(x,t)=X(x)T(t)\)로 두자.

변수분리를 사용하자.

\(X''(x)=K_{n}X(x)\)

\(T'(t)=\beta K_{n}T(t)\)

여기서 \(K_{n}=-(\frac{2\pi}{L})^2n^2\), \(n=0, \pm 1,\pm 2,\pm 3,\cdots\)

\(X_n(x)=Ae^{ \frac{2\pi i n x}{L}}+Be^{- \frac{2\pi i n x}{L}}\)

\(T_n(t)=e^{\beta K_{n} t}=e^{-\beta(\frac{2\pi}{L})^2n^2t}\)

따라서 열방정식의 해는 \(u_{n}(x,t)=e^{ \frac{2\pi i nx}{L}}e^{-\beta(\frac{2\pi}{L})^2n^2t}\) 의 선형결합으로 나타낼 수 있다.

\(u(x,t)=\sum_{n=-\infty}^{\infty}\hat{f}(n)e^{ \frac{2\pi i nx}{L}}e^{-\beta(\frac{2\pi}{L})^2n^2t}\)

여기서

\(\hat{f}(n)=\int_{0}^{L}f(y)e^{-\frac{2\pi i ny}{L}}\,dy\) 는 푸리에 급수



자코비세타함수와 heat kernel

  • 유한한 길이의 막대에서의 경계-초기값 문제

\[u(x,t)=\sum_{n=-\infty}^{\infty}\hat{f}(n)e^{ \frac{2\pi i nx}{L}}e^{-\beta(\frac{2\pi}{L})^2n^2t}\] \[\hat{f}(n)=\int_{0}^{L}f(y)e^{-\frac{2\pi i ny}{L}}\,dy\]

  • \(L=1,\beta=1/2\pi\) 로 두자.

\[u(x,t)=\sum_{n=-\infty}^{\infty}\hat{f}(n)e^{2\pi i nx}e^{-2\pi n^2t}\]\[\hat{f}(n)=\int_{0}^{1}f(y)e^{-2\pi i ny}\,dy\]

  • 위의 두 식을 함께 쓰면,

\[u(x,t)=\sum_{n=-\infty}^{\infty}\hat{f}(n)e^{2\pi i nx}e^{-2\pi n^2t}=\int_{0}^{1}(\sum_{n=-\infty}^{\infty}e^{-2\pi i ny}e^{2\pi i nx}e^{-2\pi n^2t}) f(y)\,dy=\int_{0}^{1}K(x-y,t)f(y)\,dy \] 여기서 \(K(x,t)=\sum_{n=-\infty}^{\infty}e^{2\pi i nx}e^{-2\pi n^2t}\) heat kernel 로서의 세타함수를 얻는다

\[\vartheta (x,it)=1+2\sum_{n=1}^\infty \exp(-\pi n^2 t) \cos(2\pi nx)\]\[\frac{\partial}{\partial t} \vartheta(x,it)=\frac{1}{4\pi} \frac{\partial^2}{\partial x^2} \vartheta(x,it)\]




가우시안 Heat kernel

  • 무한한 길이의 막대를 가정 \(-\infty<x<\infty\)
  • 초기조건 (\(t=0\)) 에서의 온도분포\[u(x,0)=f(x)\]
  • \(N(\mu,\sigma^2)\) 인 정규분포의 확률밀도함수는 다음과 같다 (정규분포와 그 확률밀도함수)\[\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)\]
  • heat kernel\[K(x,t)=\frac{1}{\sqrt{2\pi \beta t}}\exp\left(-\frac{x^2}{4\beta t}\right)\]
  • heat kernel 을 이용한 열방정식의 해\[u(x,t)=\int_{-\infty}^{\infty}f(y)K(x-y,t)\,dy=\frac{1}{\sqrt{2 \pi \beta t}}\int_{-\infty}^{\infty}f(y)\exp\left(-\frac{(x-y)^2}{4\beta t}\right)\,dy\]
  • 확률론적 이해 \[\beta=1/2\] 인 경우\[u(x,t)=\int_{-\infty}^{\infty}f(y)K(x-y,t)\,dy=E[f(X_t)]\] 여기서 \(X_t\)는 \(N(x,t)\)를 따르는 확률변수



역사

  • 1807 - 푸리에가 함수의 삼각함수로의 분해를 발표, On the Propagation of Heat in Solid Bodies 푸리에 급수
  • 1822 - 푸리에가 '열의 해석적 이론 Théorie Analytique de la Chaleur'을 출판
  • 수학사 연표



메모



관련된 항목들



매스매티카 파일 및 계산 리소스



사전 형태의 자료



관련논문



관련도서



관련기사

메타데이터

위키데이터