"가위 합동 (scissors congruence)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
48번째 줄: 48번째 줄:
 
==관련논문==
 
==관련논문==
 
* Rudenko, Daniil. “Scissor Congruence and Suslin Reciprocity Law.” arXiv:1511.00520 [math], November 2, 2015. http://arxiv.org/abs/1511.00520.
 
* Rudenko, Daniil. “Scissor Congruence and Suslin Reciprocity Law.” arXiv:1511.00520 [math], November 2, 2015. http://arxiv.org/abs/1511.00520.
 +
 +
== 메타데이터 ==
 +
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q41585 Q41585]

2020년 12월 28일 (월) 07:23 판

개요

  • 힐베르트 3번 문제
  • 덴 불변량
  • 덴-사이들러 정리


힐베르트 3번 문제

  • 부피가 같은 두 다면체에 대하여 서로 합동인 다면체로의 분할을 찾을 수 있는지 (즉 가위합동인지) 에 대한 문제
  • 덴이 도입한 덴 불변량을 이용하여 해결됨
    • 부피가 같으나 가위 합동이 아닌 다면체가 존재함


덴 불변량

  • \(\mathbb{R}^3\)의 3차원 polytope \(P\)에 대하여, 덴 불변량 \(D:\mathcal{P}(\mathbb{R}^3)\to \mathbb{R}\otimes \mathbb{R}/\mathbb{Q}\pi\)을 다음과 같이 정의

\[\operatorname{D}(P) = \sum_{e} \ell(e)\otimes (\theta(e)+\mathbb{Q}\pi)\] 여기서 \(e\)는 \(P\)의 모서리, \(\ell(e)\)는 모서리의 길이, \(\theta(e)\)는 모서리 \(e\)에서 만나는 두 면의 이면각


메모


관련된 항목들


관련도서


사전 형태의 자료


리뷰논문, 에세이, 강의노트


관련논문

메타데이터

위키데이터