로저스-라마누잔 연분수

수학노트
http://bomber0.myid.net/ (토론)님의 2012년 8월 25일 (토) 15:02 판
둘러보기로 가기 검색하러 가기
이 항목의 수학노트 원문주소

 

개요
  • 라마누잔이 하디에게 보낸 편지에는 다음과 같은 공식이 포함되어 있음

\(\cfrac{1}{1 + \cfrac{e^{-2\pi}}{1 + \cfrac{e^{-4\pi}}{1+\dots}}} = \left({\sqrt{5+\sqrt{5}\over 2}-{\sqrt{5}+1\over 2}}\right)e^{2\pi/5} = e^{2\pi/5}\left({\sqrt{\varphi\sqrt{5}}-\varphi}\right) = 0.9981360\dots\)

\(\varphi\) 는 황금비

  • 위의 식은 모듈라군 \(\Gamma(5)\)에 대한 모듈라 함수 \(r(\tau)\)의 special value 로 이해할 수 있음
  • 오차방정식과 정이십면체와 깊은 관계를 가짐

 

 

연분수의 유도

\(R(z)=\sum_{n\geq 0}\frac{z^nq^{n^2}}{(1-q)\cdots(1-q^n)}=\sum_{n\geq 0}\frac{z^nq^{n^2}}{(1-q)_q^n}\)

\(H(q)=R(q), G(q)=R(1)\)

 

(정리)

\(R(z)=R(zq)+zqR(zq^2)\)

 

증명

\(R(zq)=\sum_{n\geq 0}\frac{(zq)^nq^{n^2}}{(1-q)_q^n}=\sum_{n\geq 0}\frac{z^nq^{n^2+n}}{(1-q)_q^n}\)

\(R(zq^2)=\sum_{n\geq 0}\frac{(zq^2)^nq^{n^2}}{(1-q)_q^n}=\sum_{n\geq 0}\frac{z^nq^{n^2+2n}}{(1-q)_q^n}\)

\(zqR(zq^2)=\sum_{n\geq 0}\frac{z^{n+1}q^{(n+1)^2}}{(1-q)_q^n}=\sum_{n\geq 1}\frac{z^{n}q^{n^2}}{(1-q)_q^{n-1}}\)

\(R(zq)+zqR(zq^2)=\sum_{n\geq 0}\frac{z^nq^{n^2+n}}{(1-q)_q^n}+\sum_{n\geq 1}\frac{z^{n}q^{n^2+n}}{(1-q)_q^{n-1}}\)

\(R(zq)+zqR(zq^2)=\sum_{n\geq 0}\frac{z^nq^{n^2+n}}{(1-q)_q^n}+\sum_{n\geq 1}\frac{z^{n}q^{n^2}}{(1-q)_q^{n-1}} \\ =1+ \sum_{n\geq 1}\frac{z^nq^{n^2+n}+z^nq^{n^2}(1-q^n)}{(1-q)_q^n} \\ =1+\sum_{n\geq 0}\frac{z^nq^{n^2}}{(1-q)_q^n} = R(z)\)  ■

 

 

이 정리로부터 \(R(q^n)=R(q^{n+1})+q^{n+1}R(q^{n+2})\)

즉 \(\frac{R(q^{n+1})}{R(q^n)}=\cfrac{1}{1+q^{n+1}\cfrac{R(q^{n+2})}{R(q^{n+1})}}\)를 얻는다.

\(\frac{H(q)}{G(q)}=\cfrac{R(q)}{R(1)} = \cfrac{1}{1+q\cfrac{R(q^2)}{R(q)}}=\cfrac{1}{1+\cfrac{q}{1+q^2\cfrac{R(q^3)}{R(q^2)}}}=\cdots\)

이를 반복하면, 다음을 얻는다.

 

\(\frac{H(q)}{G(q)} = \cfrac{1}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\cdots}}}}\)

 

 

로저스-라마누잔 모듈라 함수

\(r(\tau)=q^{\frac{1}{5}} \frac{H(q)}{G(q)} = \cfrac{q^{\frac{1}{5}}}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\cdots}}}}\)

 

여기서 \(q=e^{2\pi i\tau}\).

\(\tau=i\) 인 경우에 값을 계산할 수 있다면, 위의 값을 얻을 수 있다.

\(r(i)=\cfrac{e^{\frac{-2\pi}{5}}}{1+\cfrac{e^{-2\pi}}{1+\cfrac{e^{-4\pi}}{1+\cfrac{e^{-6\pi}}{1+\cdots}}}}\)

  • 모듈라 군(modular group) \(\Gamma(5)\)에 의해 불변이다
    \(r(\tau)=q^{\frac{1}{5}} \frac{H(q)}{G(q)} = \cfrac{q^{\frac{1}{5}}}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\cdots}}}}\)

 

(정리)

\(r(\tau+1)=Sr(\tau)=\zeta_5r(\tau)\)

\(r(-\frac{1}{\tau})=Tr(\tau)\)

여기서 \(S=\begin{pmatrix} \zeta_{10} & 0 \\ 0 & \zeta_{10} \end{pmatrix} \), \(T={\begin{pmatrix} -1 & g \\ g & 1 \end{pmatrix}}\),  \(g=\frac{\sqrt{5}-1}{2}\)

 

 

푸리에급수
  • 로저스-라마누잔 항등식으로부터 푸리에급수를 유도할 수 있다
    \(r(\tau)=q^{\frac{1}{5}} \frac{H(q)}{G(q)} =q^{\frac{1}{5}}\frac {(q;q^5)_\infty (q^4; q^5)_\infty}{(q^2;q^5)_\infty (q^3; q^5)_\infty} \)
    \(r(\tau) = q^{1/5}(1 - q + q^2 - q^4 + q^5 - q^6 + q^7 - q^9 + 2q^{10} - 3q^{11}+\cdots\)

 

 

데데킨트 \(\eta\) 함수와의 관계

\(\frac{1}{r(5\tau)}-r(5\tau)-1=\frac{\eta(\tau)}{\eta(25\tau)}\)

\(\frac{1}{r(-\frac{1}{5\tau})}-r(-\frac{1}{5\tau})-1=\frac{\eta(-\frac{1}{25\tau})}{\eta(-\frac{1}{\tau})}\)

 

  • 에타함수의 modularity

\(\eta(-\frac{1}{\tau}) =\sqrt{\frac{\tau}{i}}\eta(\tau)\)

\(\eta(-\frac{1}{25\tau}) =\sqrt{\frac{25\tau}{i}}\eta(25\tau)\)

\(\frac{\eta(\tau)}{\eta(25\tau)}\frac{\eta(-\frac{1}{25\tau})}{\eta(-\frac{1}{\tau})}=5\)

  • 양변을 곱하여 다음 식을 얻는다.

\((\frac{1}{r(5\tau)}-r(5\tau)-1)(\frac{1}{r(-\frac{1}{5\tau})}-r(-\frac{1}{5\tau})-1)=5\)

 

\(\tau=\frac{i}{5}\) 인 경우, \((\frac{1}{r(i)}-r(i)-1)^2=5\) 를 얻고, 방정식을 풀 수 있음.

 

\(r(i)={\sqrt{5+\sqrt{5}\over 2}-{\sqrt{5}+1\over 2}}\)

 

 

special values
  • 위에서 다음을 얻었다
    \(r(i)={\sqrt{5+\sqrt{5}\over 2}-{\sqrt{5}+1\over 2}}\)
    \(r(0)= \sqrt{\frac{5-\sqrt{5}}{5+\sqrt{5}}}=\varphi-1=0.618\cdots\)
  • 또다른 값과 기하학적인 의미에 대해서는 정이십면체와 모듈라 연분수 항목 참조

 

 

 

j-invariant 와의 관계

(정리)   

\((r(\tau)^{20}-228r(\tau)^{15}+494r(\tau)^{10}+228r(\tau)^{5}+1)^3+j(\tau)r(\tau)^{5}(r(\tau)^{10}+11r(\tau)^{5}-1)^5=0\)

또는 \(j(\tau)=-\frac{(r(\tau)^{20}-228r(\tau)^{15}+494r(\tau)^{10}+228r(\tau)^{5}+1)^3}{r(\tau)^{5}(r(\tau)^{10}+11r(\tau)^{5}-1)^5}\)

여기서, \(j(\tau)\) 는 j-invariant

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료

 

관련논문

 

 

관련도서