양자 다이로그 함수(quantum dilogarithm)

수학노트
http://bomber0.myid.net/ (토론)님의 2011년 6월 30일 (목) 05:50 판
둘러보기로 가기 검색하러 가기
이 항목의 수학노트 원문주소

 

 

개요

 

 

바일 대수(Weyl algebra)

 

 

 

q-integral (Jackson integral)
  • \(0<q<1\)에 대하여 다음과 같이 정의
    \(\int_0^a f(x) d_q x = a(1-q)\sum_{k=0}^{\infty}q^k f(aq^k )\)
    \(\int_0^{\infty} f(x) d_q x =(1-q)\sum_{k=-\infty}^{\infty}q^k f(aq^k )\)
  • \(q\to 1\) 이면, \(\int_0^a f(x) d_q x \to \int_0^a f(x) dx \)

 

 

양자 다이로그 함수(quantum dilogarithm)

\(\operatorname{Li}_{2,q}(z) = -\int_0^z{{\ln (1-t)}\over t} d_{q}t \)

\(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt \)

\(\Psi(z)=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)

 

\(\Psi(z)=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})\)

 

 

 

근사 공식
  • \(q=e^{-t}\) and as the t goes 0 (i.e. as q goes to 1)

\(\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})\)

여기서 C는 로저스 다이로그 함수 (Roger's dilogarithm) 의 어떤 값에서의 합

 

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문과 에세이

 

 

관련논문

 

 

관련도서

 

 

링크