정수에서의 리만제타함수의 값
이 항목의 스프링노트 원문주소
개요
- 홀수인 자연수를 제외한 모든 정수에 대하여 리만제타함수의 값은 닫힌 형태로 알려져 있음.
\(\zeta(2n) =(-1)^{n+1}\frac{B_{2n}(2\pi)^{2n}}{2(2n)!}, n \ge 1\)여기서 \(B_{2n}\)은 베르누이수.
\(\zeta(-n)=-\frac{B_{n+1}}{n+1}, n \ge 1\) 또는\(\zeta(1-2n)=-\frac{B_{2n}}{2n}, n \ge 1\)
\(\zeta(0)=-\frac{1}{2}\) - 참고로 베르누이 수의 처음 몇개는 다음과 같음
\(B_0=1\), \(B_1=-{1 \over 2}\), \(B_2={1\over 6}\), \(B_3=0\), \(B_4=-\frac{1}{30}\), \(B_5=0\), \(B_6=\frac{1}{42}\), \(B_8=-\frac{1}{30}\), \(B_{10}=\frac{5}{66}\), \(B_{12}=-\frac{691}{2730}\),\(B_{14}=\frac{7}{6}\)
컨투어 적분을 이용한 증명
\(\zeta(4)\) 를 구하는 방법을 통해서 일반적인 경우의 증명도 알 수 있다. \(\oint_{C_{R}}\frac{\pi\cot(\pi z)}{z^{4}}dz\)
\(C_{R}\)는 원점을 중심으로 반지금이\(R\) 인 원
이때 \(R\)이 커지면, 적분은 0으로 수렴한다.
유수정리를 사용하자.
0이 아닌 정수 \(k\)에 대하여 \(z\approx k\) 이면, \(\pi \cot \pi z \approx \frac{1}{z-k}\)
한편\(\frac{\pi\cot(\pi z)}{z^{4}}\)의 0이 아닌 정수 \(k\)에서의 유수(residue)는 \(\frac{1}{k^{4}}\)로 주어진다.
\(\cot x = \frac {1} {x} - \frac {x}{3} - \frac {x^3} {45} - \frac {2 x^5} {945} - \cdots = \sum_{n=0}^\infty \frac{(-1)^n 2^{2n} B_{2n} x^{2n-1}}{(2n)!}\)(코탄젠트 참조)
를 이용하면 0 에서의 유수는 \(-\pi^{4}/45\) 임을 알 수 있다.
그러므로 모든 유수의 합은 \(-\frac{\pi^4}{45}+2\sum_{k=1}^{\infty}\frac{1}{k^{4}}=0\)따라서 \(\zeta(4)=\frac{\pi^4}{90}\)
일반적인 자연수 \(n\) 에 대하여도 마찬가지 방법으로
\(2\zeta(2n)+\frac{(-1)^n 2^{2n}B_{2n}\pi^{2n}}{(2n)!}=0\)
\(\zeta(2n) =(-1)^{n+1}\frac{B_{2n}(2\pi)^{2n}}{2(2n)!}, n \ge 1\)
을 얻는다.
맥클로린급수
- 로그감마 함수의 맥클로린 급수는 다음으로 주어진다
\(\log\Gamma(1+x) =-\gamma x+\sum_{k=2}^{\infty}(-1)^k \frac{\zeta(k)}{k}x^k\) - 코탄젠트의 맥클로린 급수
\(\pi x\cot \pi x =-2 \sum_{n=0}^\infty \zeta(2n)x^{2n}\)
홀수에서의 리만제타함수의 값
상위 주제
- 리만제타함수
- 두자연수가 서로소일 확률과 리만제타함수
- 리만가설
- 모든 자연수의 곱과 리만제타함수
- 모든 자연수의 합과 리만제타함수
- 소수와 리만제타함수
- ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)
- ζ(4)와 슈테판-볼츠만 법칙
- [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|]]정수에서의 리만제타함수의 값
- 두자연수가 서로소일 확률과 리만제타함수
재미있는 사실
역사
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
블로그
-
- 오늘의 계산 00 : 짝수의 자연수에 대한 제타함수 값의 유도
- 2008-3-19
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=