원분체의 데데킨트 제타함수

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 1일 (목) 13:27 판 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기

이 항목의 수학노트 원문주소

 

 

개요

 

 

데데킨트 제타함수의 분해

  • \(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/n\mathbb{Z})^\times\)
  • modulo n 인 디리클레 캐릭터 들의 집합 \(\hat{G}\)을 생각하자
  • 디리클레 캐릭터\(\chi\in \hat{G}\) 는 적당한 conductor \(f|n\) 을 갖는 원시(primitive) 디리클레 character \(\chi_{f}\)로부터 얻어진다.

(정리)

\(\zeta_K(s)=\prod_{\chi\in \tilde{G}}L(\chi_{f},s)\)

(따름정리)

등차수열의 소수분포에 관한 디리클레 정리

 

 

  • \(K = \mathbb Q(\zeta_3)=\mathbb{Q}(\sqrt{-3})\)의 경우 \(d_K=-3\)
    • \(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/3\mathbb{Z})^\times =\{1,2\}\)
    • \(\hat{G}=\{1,\chi\}\)
      \(\chi(a)=\left(\frac{a}{3}\right)\)
    • \(1\in \hat{G}\)의 conductor는 1
    • \(\chi\in\hat{G}\)의 conductor는 3
    • 따라서 제타함수의 분해는 다음과 같음
      \(\zeta_{K}(s)=\zeta(s)L(\chi,s)\)
  • \(K = \mathbb Q(\zeta_4)=\mathbb{Q}(\sqrt{-1})\)의 경우 \(d_K=-4\)
    • \(G=\text{Gal}(K/\mathbb Q) \simeq (\mathbb{Z}/4\mathbb{Z})^\times =\{1,3\}\)
    • \(\hat{G}=\{1,\chi\}\)
      \(\chi(a)=\left(\frac{-4}{a}\right)=\left(\frac{-1}{a}\right)\)
    • \(1\in \hat{G}\)의 conductor는 1
    • \(\chi\in\hat{G}\)의 conductor는 4
    • 따라서 제타함수의 분해는 다음과 같음
      \(\zeta_{K}(s)=\zeta(s)L(\chi,s)\)

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서