히포크라테스의 초승달
http://bomber0.myid.net/ (토론)님의 2009년 9월 18일 (금) 15:26 판
작도와 구적가능성
- 작도문제와 구적가능성 에서 간략하게 소개되어 있음
히포크라테스의 초승달
- 히포크라테스는 BC440년경, 다음과 같은 발견으로 원의 구적문제가 해결 가능할지도 모른다는 희망을 남김.
[/pages/2981558/attachments/1333864 hippocrates.jpg]
어두운 초승달 영역의 넓이와, 삼각형 OAB의 넓이가 같다
- 이 사실의 증명은 피타고라스의 정리를 사용
재미있는 사실
- 구적가능한 초승달은 다음의 다섯 가지 경우밖에 없음.
- 그림의 u값은 두 부채꼴의 중심각의 비율임.
- 증명은 아래 참고할만한 자료의 Hippocrates' lunes and transcendence 를 참조할 것.
[/pages/2981558/attachments/1333916 2.jpg]
[/pages/2981558/attachments/1333914 4.jpg]
[/pages/2981558/attachments/1333912 5.jpg]
[/pages/2981558/attachments/1333910 3.jpg]
[/pages/2981558/attachments/1333908 1.jpg]
관련된 단원
- 작도
관련된 다른 주제들
관련도서 및 추천도서
- Journey through Genius: The Great Theorems of Mathematics
- Chapter 1. Hippocrates' Quadrature of the Lune
- William Dunham
관련된 고교수학 또는 대학수학
참고할만한 자료
- The Problem of Squarable Lunes
- M. M. Postnikov and Abe Shenitzer, The American Mathematical Monthly, Vol. 107, No. 7 (Aug. - Sep., 2000), pp. 645-651
- Hippocrates' lunes and transcendence
- Kurt Girstmair
- Chebotarev and his density theorem
- P. Stevenhagen and H. W. Lenstra, Jr