페르마의 두 제곱의 합에 대한 정리
개요
- 두 정수 \(x,y\)에 대하여 \(x^2+y^2\) 형태로 표현될 수 있는 소수 \(p\)에 대한 문제
- \(p=2\) 또는 \(p \equiv 1 \pmod 4\) 이면 모두 적당한 정수 \(x,y\)에 대하여 \(x^2+y^2\) 형태로 표현가능
- 소수 \(p=2\) 또는 \(p \equiv 1 \pmod 4\) 의 곱으로 표현되는 자연수는 \(x^2+y^2\) 형태로 표현가능
자연수를 제곱의 합으로 표현하는 방법의 수
- 자연수 $n\in \mathbb{N}$에 대하여 디오판투스 방정식 \(x^2+y^2=n\)의 해의 개수를 \(r_2(n)\)라 하면 다음이 성립한다
\[r_2(n)=4\sum_{d|n}\chi(d)\] 여기서 \(n\)이 홀수이면 \(\chi(n)=(-1)^{\frac{n-1}{2}}\), \(n\)이 짝수이면 \(\chi(n)=0\).
- $\{r_2(n)\}_{n\geq 0}$은 다음과 같은 수열이다
$$ 1, 4, 4, 0, 4, 8, 0, 0, 4, 4, 8, 0, 0, 8, 0, 0, 4, 8, 4, 0, 8, 0, 0, \ 0, 0, 12,\cdots $$
- 수체 $K=Q(\sqrt{-1})$의 데데킨트 제타함수의 분해로부터 얻어지는 결과
$$ \zeta_{K}(s)=\zeta(s)L_{-4}(s) $$ 여기서 \(\zeta(s)\) 는 리만제타함수, 아래의 디리클레 L-함수 \[L_{-4}(s)=\sum_{n=1}^{\infty}\frac{\chi(n)}{n^{s}}\]
- 이차 수체의 데데킨트 제타함수 항목 참조
두 제곱의 합으로 표현되는 400까지의 정수
- 0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 58, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 121, 122, 125, 128, 130, 136, 137, 144, 145, 146, 148, 149, 153, 157, 160, 162, 164, 169, 170, 173, 178, 180, 181, 185, 193, 194, 196, 197, 200, 202, 205, 208, 212, 218, 221, 225, 226, 229, 232, 233, 234, 241, 242, 244, 245, 250, 256, 257, 260, 261, 265, 269, 272, 274, 277, 281, 288, 289, 290, 292, 293, 296, 298, 305, 306, 313, 314, 317, 320, 324, 325, 328, 333, 337, 338, 340, 346, 349, 353, 356, 360, 361, 362, 365, 369, 370, 373, 377, 386, 388, 389, 392, 394, 397, 400
400이하의 소수
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397
\(x^2+y^2\)로 표현되는 400까지의 소수
2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397
4 로 나눈 나머지가 1인 소수
5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397
그런데 사실 이야기가 여기서 끝나는 것이 아니다.
\(x^2+2y^2\)로 표현되는 400까지의 소수
2, 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379
8로 나눈 나머지가 1이나 3인 소수
3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313,331, 337, 347, 353, 379
\(x^2+3y^2\)로 표현되는 400까지의 소수
3, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397
12로 나눈 나머지가 1이나 7인 소수
7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397
\(x^2+4y^2\)로 표현되는 400까지의 소수
5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397
16으로 나눈 나머지가 1,5, 9,16 인 소수 (즉 4로 나눈나머지가 1인 소수)
5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397
역사
메모
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Fermat%27s_theorem_on_sums_of_two_squares
- http://en.wikipedia.org/wiki/Proofs_of_Fermat's_theorem_on_sums_of_two_squares
관련논문
- A One-Sentence Proof That Every Prime $p\equiv 1(\mod 4)$ Is a Sum of Two Squares
- D. Zagier, The American Mathematical Monthly, Vol. 97, No. 2 (Feb., 1990), p. 144