푸앵카레의 추측
Pythagoras0 (토론 | 기여)님의 2020년 12월 28일 (월) 03:09 판
개요
- 푸앵카레의 추측 단일연결된 컴팩트 3차원 다양체는 3차원 구와 위상적으로 같다
단일연결된 공간
- 단일연결된 공간(simply connected space)
- 공간에 놓인 모든 닫힌 곡선을 연속적으로 변화시켜 점으로 만들 수 있는 경우, 그 공간은 단일연결되었다고 함.
- 2차원 구면은 단일연결되어있음.
- 도넛은 단일연결되어있지 않음.
2차원 구면의 단일연결성
- 구면에 놓인 닫힌 곡선을 연속적으로 변화시켜 점으로 만들 수 있음
도넛의 단일연결성
- 도넛의 경우, 닫힌 곡선을 점으로 변화시킬 수 없는 경우가 존재하므로 단일연결되어 있지 않다
다양체(manifold)
- 1차원 다양체 = 곡선
- 원, 직선, ...
- 2차원 다양체 = 곡면
- 평면, 구면, 도넛,
- n-차원 다양체 : 곡선과 곡면의 n차원 일반화
- 국소적으로 n-차원 유클리드 공간과 같은 공간을 n-차원 다양체라 한다
위상적으로 같음
- homeomorphic, homeomorphism
- 도넛과 커피잔의 관계처럼 연속적인 변화를 통해 두 위상적 공간을 같도록 만들 수 있다면, 위상적으로 같다고 말한다
역사
- 수학사 연표
- 1904 푸앵카레의 추측
- 1982 써스톤 geometrization 추측
- 1982 리차드 해밀턴
- 2006 그리고리 페렐만
메모
- http://lecture.math.inha.ac.kr/~jhyang/paper/EPerelman.pdf
- [1]http://nepalimath.com/poincare.aspx
- http://comet.lehman.cuny.edu/sormani/others/perelman/introperelman.html
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/푸앵카레_추측
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Simply_connected_space
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
리뷰논문, 에세이, 강의노트
- Curtis T. McMullen, The evolution of geometric structures on 3-manifolds Bull. Amer. Math. Soc. 48 (2011), 259-274.
- Tao, Terence. 2006. “Perelman’s proof of the Poincar’e conjecture: a nonlinear PDE perspective”. math/0610903 (10월 29). http://arxiv.org/abs/math/0610903.
- Shing-Tung Yau, Structure of Three-Manifolds– Poincar´e and geometrization conjectures 2006