리만 제타 함수
간단한 소개
- 리만 제타 함수는 정수론에서 소수의 분포와 관련한 정보를 담고 있는 중요한 함수.
- 리만 가설
해석적확장(analytic continuation)
자코비의 세타함수를 이용하여, 리만제타함수를 복소평면 전체로 확장할 수 있음.
\(\theta(\tau)= \sum_{n=-\infty}^\infty \exp(\pi i n^2\tau)\)
\(\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}\) 임을 이용하여, \(\int_0^\infty e^{-\pi n^2t} t^{\frac{s}{2}} \frac{dt}{t} = {\pi}^{-\frac{s}{2}}\Gamma(\frac{s}{2})\frac{1}{n^s}\) 를 얻을 수 있음.
형식적으로는 다음과 같은 적분에 의해, 리만제타함수를 얻을 수 있음.
\(\pi^{-s/2}\Gamma(s/2)\zeta(s) = \int_0^\infty (\frac{\theta(it)-1}{2})t^{\frac{s}{2}} \frac{dt}{t}\)
그러나 위의 적분은 모든 s에 대하여 수렴하지 않음.
세타함수의 성질을 이용하여, 모든 s에 대하여 정의된 적분을 쓰면,
\(\xi(s)=\pi^{-s/2}\Gamma(s/2)\zeta(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}\)
를 얻을 수 있게 된다.
함수방정식
\(\theta(\frac{i}{y})=\sqrt{y} \theta({iy)\) 와 \(t=\frac{1}{y}\) 를 이용하여 치환적분을 하면, 다음 식을 얻는다.
\(\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t}= \int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}\)
- \(\xi(s) = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)\)
- \(\xi(s) = \xi(1 - s)\)
- 함수방정식은 아래 식의 우변을 통해 알 수 있음.
\(\xi(s) = \frac{1}{s-1}-\frac{1}{s} +\int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}+\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}\)
리만가설
메모
- analytic continuation 해석적 접속
- continuation 연속
- continuation method 연속법
- direct analytic continuation 직접해석접속
하위페이지
리만제타함수의 값
관련된 학부 과목과 미리 알고 있으면 좋은 것들
관련된 대학원 과목
관련된 다른 주제들
표준적인 도서 및 추천도서
- Riemann's Zeta Function
- Harold M. Edwards
위키링크
참고할만한 자료
- Riemann's zeta function
- Williams, Floyd
- June 16, 2008
- MSRI 'A Window into Zeta and Modular Physics'워크샵
- 리만제타함수의 해석적 연속 및 함수방정식에 대한 내용을 담고 있는 강의
- 피타고라스의 창