근의 공식과 라그랑지 resolvent
둘러보기로 가기
검색하러 가기
개요
- 라그랑지 resolvent 의 아이디어를 사용하여 3차 방정식의 근의 공식 을 유도할 수 있음
3차 방정식의 근의 공식
- 방정식 \(t^3+p t+q=0\) 의 해를 \(x,y,z\)라 하자
- \(\omega \) 는 \(\omega ^2+\omega +1=0\) 를 만족시키는 primitive root of unity 이다
- \(u\)와 \(v\)를 다음과 같이 정의하자
\[u=\left(x+\omega y+\omega ^2 z\right)^3\] \[v=\left(x+\omega ^2 y+\omega z\right)^3\]
- 다음이 성립한다
\[u+v=27 x y z+2 (x+y+z)^3-9 (x+y+z) (x y+x z+y z)=-27 q\]\[uv=(x+y+z)^6-9 (x+y+z)^4 (x y+x z+y z)+27 (x+y+z)^2 (x y+x z+y z)^2-27 (x y+x z+y z)^3=-27 p^3\]
- 따라서 \(u,v\)는 방정식 \(x^2+27q x-27 p^3=0\)의 해가 되며, \(p,q\) 와 근호를 사용하여 표현할 수 있다
\[ \left\{ \begin{array}{c} u=\frac{3}{2} \left(-9 q-\sqrt{3} \sqrt{4 p^3+27 q^2}\right) \\ v =\frac{3}{2} \left(-9 q+\sqrt{3} \sqrt{4 p^3+27 q^2}\right) \end{array} \right. \]
- \(x,y,z\)는 다음 선형연립방정식의 해이므로, \(p,q\) 와 근호를 사용하여 표현할 수 있게 된다
\[ \left\{ \begin{array}{c} x+ y+z & =& 0 \\ x+\omega y+\omega ^2 z&=&\sqrt[3]{u} \\ x+\omega^2 y+\omega z&=&\sqrt[3]{v} \end{array} \right. \]
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- resolvent - 대한수학회 수학용어집
- 단어사전