디랙 행렬
둘러보기로 가기
검색하러 가기
개요
- 디랙 방정식 을 유도하는 과정에서 디랙에 의해 고안됨
- 해밀턴의 사원수(quarternions) 의 재발견
- 클리포드 대수와 스피너의 예
정의
\(\begin{array}{l} \gamma ^0=\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) \\ \gamma ^1=\left( \begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{array} \right) \\ \gamma ^2=\left( \begin{array}{cccc} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{array} \right) \\ \gamma ^3=\left( \begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right) \end{array}\)
anticommutator 관계식
- \(\left\{\gamma^i,\gamma^j\right\}=2\eta^{i j}I_4\) 여기서\(\eta^{i j}\)는 (+ − − −).
- 이로부터 4차원 민코프스키 공간 \(E_{1,3}\)의 클리포드 대수 \(C(E_{1,3})\) 를 얻을 수 있다
- 디랙 행렬은 \(C(E_{1,3})\) 의 4차원 표현(representation) 이라 할 수 있다
디랙의 아이디어
- 클라인-고든 방정식에 등장하는 달랑베르시안 연산자 \(\partial_0^2-\partial_1^2-\partial_2^2-\partial_3^2\)의 제곱근을 찾으려는 시도
- \(D=\gamma^\mu \partial_\mu\) 형태의 미분연산자가 \(D^2=\partial_0^2-\partial_1^2-\partial_2^2-\partial_3^2\) 를 만족시키기 위해서는 \(\gamma^\mu\) 사이에 다음의 관계가 성립해야 한다
- \(\gamma^{\mu}\gamma^{\mu}=\eta^{\mu \mu}\)
- \(\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=0, (\mu\neq \nu)\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
메타데이터
위키데이터
- ID : Q1151645
Spacy 패턴 목록
- [{'LOWER': 'gamma'}, {'LEMMA': 'matrix'}]