"로그감마 함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “네이버(.*)]” 문자열을 “” 문자열로)
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
15번째 줄: 15번째 줄:
 
==후르비츠 제타함수==
 
==후르비츠 제타함수==
  
*  Lerch의 공식 : [[후르비츠 제타함수(Hurwitz zeta function)]]의 미분<br><math>\frac{\partial }{\partial s}\zeta(s,a)|_{s=0} =\log \frac{\Gamma(a)}{\sqrt{2\pi}}</math><br>
+
*  Lerch의 공식 : [[후르비츠 제타함수(Hurwitz zeta function)]]의 미분:<math>\frac{\partial }{\partial s}\zeta(s,a)|_{s=0} =\log \frac{\Gamma(a)}{\sqrt{2\pi}}</math><br>
  
 
 
 
 
23번째 줄: 23번째 줄:
 
==적분표현==
 
==적분표현==
  
*  Binet's second expression<br><math>\operatorname{Re} z > 0 </math> 일 때, <math>\log \Gamma(z)=(z-\frac{1}{2})\log z -z+\frac{1}{2}\log 2\pi+ 2\int_0^{\infty}\frac{\tan^{-1}(t/z)}{e^{2\pi t} -1}dt</math><br>http://dlmf.nist.gov/5/9/ 참고<br>
+
*  Binet's second expression:<math>\operatorname{Re} z > 0 </math> 일 때, <math>\log \Gamma(z)=(z-\frac{1}{2})\log z -z+\frac{1}{2}\log 2\pi+ 2\int_0^{\infty}\frac{\tan^{-1}(t/z)}{e^{2\pi t} -1}dt</math><br>http://dlmf.nist.gov/5/9/ 참고<br>
  
 
 
 
 
31번째 줄: 31번째 줄:
 
==쿰머의 푸리에 급수==
 
==쿰머의 푸리에 급수==
  
*  쿰머 (1847)<br><math>\begin{eqnarray}\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber \\ =(\frac{1}{2}-x)(\gamma+\log 2)+(1-x)\log \pi -\frac{1}{2}\log(\sin\pi x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber  \end{eqnarray} </math><br>
+
*  쿰머 (1847):<math>\begin{eqnarray}\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber \\ =(\frac{1}{2}-x)(\gamma+\log 2)+(1-x)\log \pi -\frac{1}{2}\log(\sin\pi x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber  \end{eqnarray} </math><br>
  
 
 
 
 
39번째 줄: 39번째 줄:
 
==테일러 급수==
 
==테일러 급수==
  
* [[로그감마 함수]]의 테일러 급수 (http://www.wolframalpha.com/input/?i=taylor+series+of+log+gamma(1%2Bx)+at+x%3D0)<br><math>\log\Gamma(1+x) =-\gamma x+\sum_{k=2}^{\infty}(-1)^k \frac{\zeta(k)}{k}x^k</math><br>
+
* [[로그감마 함수]]의 테일러 급수 (http://www.wolframalpha.com/input/?i=taylor+series+of+log+gamma(1%2Bx)+at+x%3D0):<math>\log\Gamma(1+x) =-\gamma x+\sum_{k=2}^{\infty}(-1)^k \frac{\zeta(k)}{k}x^k</math><br>
 
* [[정수에서의 리만제타함수의 값]]<br>
 
* [[정수에서의 리만제타함수의 값]]<br>
  

2013년 1월 12일 (토) 10:32 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

후르비츠 제타함수

 

 

적분표현

  • Binet's second expression\[\operatorname{Re} z > 0 \] 일 때, \(\log \Gamma(z)=(z-\frac{1}{2})\log z -z+\frac{1}{2}\log 2\pi+ 2\int_0^{\infty}\frac{\tan^{-1}(t/z)}{e^{2\pi t} -1}dt\)
    http://dlmf.nist.gov/5/9/ 참고

 

 

쿰머의 푸리에 급수

  • 쿰머 (1847)\[\begin{eqnarray}\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber \\ =(\frac{1}{2}-x)(\gamma+\log 2)+(1-x)\log \pi -\frac{1}{2}\log(\sin\pi x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber \end{eqnarray} \]

 

 

테일러 급수

 

 

정적분

\(\int_{0}^{1}\log\Gamma(x)\,dx=\log\sqrt{2\pi}\)

 

\(\int_{0}^{\frac{1}{2}}\log\Gamma(x+1)\,dx=-\frac{1}{2}-\frac{7}{24}\log 2+\frac{1}{4}\log \pi+\frac{3}{2}\log A\)

A는 Glaisher–Kinkelin 상수

 

 

스털링 공식

 

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 


 

 


 

 

블로그