르장드르 부호와 자코비 부호
둘러보기로 가기
검색하러 가기
개요
- 이차잉여의 상호법칙 을 기술하기 위한 필요에서 탄생, 정수론에서 중요한 역할
- 정수 \(a\)와 홀수인 소수 \(p\) 에 대하여, 르장드르 부호를 다음과 같이 정의한다
\[\left(\frac{a}{p}\right) = \begin{cases} \;\;\,0\mbox{ if } a \equiv 0 \pmod{p} \\+1\mbox{ if }a \not\equiv 0\pmod{p} \mbox{ and for some integer }x, \;a\equiv x^2\pmod{p} \\-1\mbox{ if there is no such } x. \end{cases}\]
- 자코비 부호는 르장드르 부호의 일반화이다
- 정수 \(a\)와 양수인 홀수 \(n\) 에 대하여, 자코비 부호를 다음과 같이 정의한다
\[\Bigg(\frac{a}{n}\Bigg) = \left(\frac{a}{p_1}\right)^{\alpha_1}\left(\frac{a}{p_2}\right)^{\alpha_2}\cdots \left(\frac{a}{p_k}\right)^{\alpha_k}\] 여기서 \(n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}\)
- 자코비 부호 \(\chi(\cdot)=(\tfrac{\cdot}{n})\) 는 \((\mathbb{Z}/n\mathbb{Z})^{\times}\) 에 대한 디리클레 캐릭터 가 된다
이차잉여
- \(\left(\tfrac{a}{n}\right)=-1\) 이면 \(a\)는 모듈로 \(n\)에 대한 비이차잉여이다
- \(a\)가 모듈로 \(n\)에 대한 이차잉여 이면 \(\left(\tfrac{a}{n}\right)=1\) 이 성립한다
- 주의 \(\left(\tfrac{2}{15}\right)=1\) 이지만 2는 모듈로 15에 대한 이차잉여 가 아니다
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Legendre_symbol
- http://en.wikipedia.org/wiki/Jacobi_symbol
- http://en.wikipedia.org/wiki/Kronecker_symbol
- http://en.wikipedia.org/wiki/Quadratic_reciprocity#Jacobi_symbol
메타데이터
위키데이터
- ID : Q748339
Spacy 패턴 목록
- [{'LOWER': 'legendre'}, {'LEMMA': 'symbol'}]