"모듈라 군, j-invariant and the singular moduli"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
<h5>개요</h5>
 
<h5>개요</h5>
  
*   <br>
 
 
* [[타원적분의 singular value k]]<br>
 
* [[타원적분의 singular value k]]<br>
 
**  자연수 <math>n </math> 에 대하여, 다음을 만족시키는 <math>k</math>를 singular value 라 한다<br><math>\frac{K'}{K}(k):=\frac{K(\sqrt{1-k^2})}{K(k)}= \sqrt n </math><br>
 
**  자연수 <math>n </math> 에 대하여, 다음을 만족시키는 <math>k</math>를 singular value 라 한다<br><math>\frac{K'}{K}(k):=\frac{K(\sqrt{1-k^2})}{K(k)}= \sqrt n </math><br>
70번째 줄: 69번째 줄:
  
 
 
 
 
 +
 +
 
 +
 +
<h5>special values</h5>
 +
 +
* <math>s=1</math>에서의 [[디리클레 L-함수]]의 도함수 값<br><math>L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})</math><br>[[Chowla-셀베르그 공식]] 항목 참조<br>
 +
* [[로그 탄젠트 적분(log tangent integral)|적분쇼]]<br><math>\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=L'_{-4}(1)- \frac{\pi}{4}\gamma=\frac{\pi}{2}\ln({\frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}\sqrt{2\pi})</math><br>
 +
* [[타원적분의 singular value k]]<br><math>k(\sqrt{-1})=\frac{1}{\sqrt{2}}</math><br>
 +
* [[타원 모듈라 λ-함수]]<br><math>\lambda(\sqrt{-1})=\frac{1}{2}</math><br>
 +
* [[베버(Weber) 모듈라 함수]]<br><math>\mathfrak{f}(i)^8=4</math><br><math>\mathfrak{f}_1(i)^8=2</math><br><math>\mathfrak{f}_2(i)^8=2</math><br>
 +
 +
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|타원 모듈라 j-함수 (j-invariant)]]<br><math> j(\sqrt{-1})=1728=12^3</math><br>
 +
 +
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]<br><math>K(\frac{1}{\sqrt{2}})=\frac{1}{4}B(1/4,1/4)=\frac{\Gamma(\frac{1}{4})^2}{4\sqrt{\pi}}=1.8540746773\cdots</math><br>
 +
* [[자코비 세타함수]]<br><math>\theta_3(\sqrt{-1})=\frac{\sqrt[4]{\pi}}{\Gamma(\frac{3}{4})}}</math><br>
  
 
 
 
 
118번째 줄: 132번째 줄:
  
 
*  Discontinuous Groups and Automorphic Functions<br>
 
*  Discontinuous Groups and Automorphic Functions<br>
** Joseph Lehner'''<br>'''
+
** Joseph Lehner
  
 
 
 
 

2009년 12월 4일 (금) 22:40 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 타원적분의 singular value k
    • 자연수 \(n \) 에 대하여, 다음을 만족시키는 \(k\)를 singular value 라 한다
      \(\frac{K'}{K}(k):=\frac{K(\sqrt{1-k^2})}{K(k)}= \sqrt n \)
  • 타원 모듈라 λ-함수
    \(\lambda(\tau)=k^2(\tau)\) 는 modulus라고 불렸으며, 아벨, 자코비와 후학들(에르미트)에 의해 많이 연구됨

  • 가장 기본적인 모듈라함수로 여겨졌으나, 나중에 \(j\)-불변량에 그 자리를 내줌
  • explicit class field theory 에서 중요한 역할을 한다

 

 

singular moduli와 관련된 함수들

\(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)

\(k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}\)

\(\lambda(\tau)=k^2(\tau)=\frac{\theta_2^4(\tau)}{\theta_3^4(\tau)}\)

 

 

타원적분과 singular moduli
  • 일종타원적분 K
    \(\frac{K'}{K}(\frac{1}{\sqrt{2}})= 1\)
    \(\frac{K'}{K}(\sqrt{2}-1)= \sqrt{2}\)
    \(\frac{K'}{K}\left(\frac{\sqrt{6}+\sqrt{2}}{4}\right)= \sqrt{3}\)
    \(\frac{K'}{K}\left(3-2\sqrt{2}}\right)= \sqrt{4}\)
  • singular values
    \(k(i)=\frac{1}{\sqrt{2}}\)
    \(k(\sqrt{2}i)=\sqrt{2}-1\)
    \(k(\sqrt{3}i)=\frac{\sqrt{6}+\sqrt{2}}{4}\)
    \(k(2i)=3-2\sqrt{2}\)
  • singular moduli
    \(\lambda(i)=k^2(i)=\frac{1}{2}\)

 

 

정의

\(\theta_{4}(\tau)= \sum_{n=-\infty}^\infty (-1)^n q^{n^2/2}\)

\(k=k(\tau)=\frac{\theta_2^2(\tau)}{\theta_3^2(\tau)}\)

\(K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}\)

\(E(k) = \int_0^{\frac{\pi}{2}} \sqrt{1-k^2 \sin^2\theta}}d\theta}{\)

\(k'=\sqrt{1-k^2}=\frac{\theta_4^2(\tau)}{\theta_3^2(\tau)}\)

\(K'(k) = K(k')\)

\(E'(k) = E(k')\)

  • 위의 함수들을 이용하여, 양수 \(r\)에 대하여 다음을 정의

\(\lambda^{*}(r):=k(i\sqrt{r})\)

 

 

special values

 

하위페이지

 

 

관련된 항목들

 

 

수학용어번역

 

 

표준적인 도서 및 추천도서
  • Discontinuous Groups and Automorphic Functions
    • Joseph Lehner

 

위키링크

 

 

참고할만한 자료