오일러 수

수학노트
(오일러수에서 넘어옴)
둘러보기로 가기 검색하러 가기

개요[편집]

  • 오일러 수 <math>E_n</math>은 다음과 같이 정의됨
<math>\frac{1}{\cosh t} = \frac{2}{e^{t} + e^ {-t} } = \sum_{n=0}^{\infty} \frac{E_n}{n!} \cdot t^n\!</math>
<math>\operatorname {sech}\, x = 1 - \frac {x^2} {2} + \frac {5x^4} {24} - \frac {61x^6} {720} + \cdots = \sum_{n=0}^\infty \frac{E_{2 n} x^{2n}}{(2n)!} , \left |x \right | < \frac {\pi} {2} </math>
<math>\sec x = 1 + \frac {x^2} {2} + \frac {5 x^4} {24} + \frac {61 x^6} {720} + \cdots=\sum_{n=0}^\infty \frac{(-1)^n E_{2n} x^{2n}}{(2n)!}</math>
  • 처음 몇 개의 오일러 수는 다음과 같이 주어짐 ($n$이 홀수이면, $E_n=0$)

$$ \begin{array}{c|c}

n & E_n \\

\hline

0 & 1 \\
2 & -1 \\
4 & 5 \\
6 & -61 \\
8 & 1385 \\
10 & -50521 \\
12 & 2702765 \\
14 & -199360981 \\
16 & 19391512145 \\
18 & -2404879675441 \\
20 & 370371188237525

\end{array} $$  

재미있는 사실[편집]

<math>4\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{2k-1}=\pi</math>

 

<math>\pi-4\sum_{k=1}^{N/2}\frac{(-1)^{k-1}}{2k-1 }\sim \sum_{m=0}^{\infty}\frac{2E_{2m}}{N^{2m+1}}=\frac{2}{N}-\frac{2}{N^3}+\frac{10}{N^5}-\frac{122}{N^7}+\frac{2770}{N^7}-\frac{101042}{N^7}+\cdots</math>

 

좀더 엄밀하게 오차항은 다음 정도의 크기를 가짐

<math>4\sum_{k=n+1}^{\infty}\frac{(-1)^{k-1}}{2k-1 }=(-1)^n\sum_{k=0}^{M}\frac{2E_{2k}}{(2n)^{2k+1}}+R(M)</math>

여기서 <math>|R(M)| \leq \frac{2|E_{2k}|}{(2n)^{2M+1}}</math>

 

따라서 <math>N=10^{l}</math> 일때,  (4배한) 라이프니츠급수와 파이의 자릿수는 소수점 <math>l</math>번째(또는 그 앞) 자리에서 처음 다르게 나타난다.

오차항에 대해서는 <math>2E_{2(M+1)}</math>과 <math>10^{2l}</math> 의 자릿수가 엇비슷해지는 <math>M</math>을 찾았을때 <math>k=M</math> 까지 오차항을 계산하면 파이의 자릿수를 어느 정도 얻을 수 있겠다. 

라이프니츠 급수로도 오일러수를 통한 보정으로 파이의 자릿수를 소수점아래 <math>(2M+1)l</math> 자리까지는 얻을 수 있다는 얘기다.

 

 

예)

<math>N=10^2</math> 인 경우, <math>2E_6</math>가 네자리 수이므로, <math>M=2</math> 로 두면 위의 말대로, 라이프니츠 급수를 통하여 파이의 소수점 10자리 정도의 전개정도는 얻을 수 있다.

 

<math>4\sum_{k=1}^{50}\frac{(-1)^{k-1}}{2k-1}=3.12159465259101047851\cdots</math>

 

0.12345678901234567890123456789012345678901234567890123456789

3.14159265358979323846… (원래 파이값)

3.12159465259101047851… (위의 급수)

 

자릿수가 다른 곳의 차이를 보면, 오일러수인 2, -2, 10, -122가 나타나는 것을 볼 수 있다.

 

예)

<math>N=10^3</math> 인 경우, <math>2E_{10}</math>이 여섯자리 수이므로, <math>M=4</math> 로 두면 위의 말대로, 라이프니츠 급수를 통하여 파이의 소수점 27자리 정도의 전개정도는 얻을 수 있다.

 

<math>4\sum_{k=1}^{500}\frac{(-1)^{k-1}}{2k-1}=3.13959265558978323858464061338053947906585258315983\cdots</math>

 

0.12'34567890123456789012345'6789012345678901234567890123456789

3.1'415926535897932384626433'8327950288419716939937510582

3.13959265558978323858464061338053947906585258315983

 

자릿수가 다른 곳의 차이를 보면, 오일러수 2, -2, 10, -122, 2770가 나타난다.

 

 

예)

<math>N=10^4</math> 인 경우, <math>E_{12}</math>가 일곱자리 수이므로, <math>M=5</math> 로 두면 위의 말대로, 라이프니츠 급수를 통하여 파이의 소수점 44자리 정도의 전개를 얻을 수 있다.

 

 

<math>4\sum_{k=1}^{5000}\frac{(-1)^{k-1}}{2k-1}=3.141392653591793238362643395479500114198179\cdots</math>

 

0.12345678901234567890123456789012345678901234567890123456789

3.141'59265358'979323846264338327950288419716939937510582

3.14139265359'1793238362643395479500'1141981798188345532196965187625458916006334194979629989247706731687

 

자릿수가 다른 곳의 차이를 보면, 2, -2, 10, -122, 2770, -101042가 나타난다. 

 

 

역사[편집]

 

 

관련된 항목들[편집]


 

사전 형태의 자료[편집]


매스매티카 파일 및 계산 리소스[편집]


 

관련논문[편집]