유한반사군과 콕세터 군(finite reflection groups and Coxeter groups)
개요
- \(\left\langle r_1,r_2,\ldots,r_n \mid r_1^2=\cdots=r_n^2=(r_ir_j)^{m_{ij}}=1\right\rangle\)
- 대칭군 (symmetric group) 은 콕세터 군의 예이다
- 대칭군 \(S_{n+1}\)은 \(A_n\) 타입의 콕세터 군
- 정이면체군(dihedral group)은 콕세터 군의 예이다
- 크기가 \(2m\)인 정이면체 군은 \(I_2(m)\) 타입의 콕세터 군
- 리대수의 이론에 등장하는 바일군(Weyl group) 은 콕세터 군의 예이다
테이블
분류
\[ \begin{array}{c|c|c|c|c|c} & \text{rank} & \text{degree} & \text{exponent} & \text{order} & \text{Coxeter} \\ \hline A_n & n & 2,3,\cdots, n+1 & 1,2,\cdots, n& (n+1)! & n+1 \\ B_n/C_n & n & 2,4,6,\cdots,2n & 1,3,5,\cdots,2n-1 & 2^n n! & 2 n \\ D_n & n & 2,4,6,\cdots 2n-2, n & 1,3,5,\cdots,2n-3, n-1 & 2^{n-1} n! & 2 n-2 \\ E_6 & 6 & 2,5,6,8,9,12 & 1,4,5,7,8,11 & 51840 & 12 \\ E_7 & 7 & 2,6,8,10,12,14,18 & 1,5,7,9,11,13,17 & 2903040 & 18 \\ E_8 & 8 & 2,8,12,14,18,20,24,30 & 1,7,11,13,17,19,23,29 & 696729600 & 30 \\ F_4 & 4 & 2,6,8,12 & 1,5,7,11 & 1152 & 12 \\ G_2 & 2 & 2,6 & 1,5 & 12 & 6 \\ H_3 & 3 & 2,6,10 & 1,5,9 & 120 & 10 \\ H_4 & 4 & 2,12,20,30 & 1,11,19,29 & 14400 & 30 \\ I_2(m) & 2 & 2,m & 1,m-1 & 2 m & m \end{array} \]
정다면체와 콕세터군
- \(D_4 : 2, 4, 4, 6\)
- \(F_4 : 2, 6, 8, 12\)
- \(H_4 : 2, 12, 20, 30\)
다면체 | 점 V | 선 E | 면 F | V-E+F | ||
정사면체 | 4 | 6 | 4 | 4-6+4=2 | ||
정육면체 | 8 | 12 | 6 | 8-12+6=2 | ||
정팔면체 | 6 | 12 | 8 | 6-12+8=2 | ||
정십이면체 | 20 | 30 | 12 | 20-30+12=2 | ||
정이십면체 | 12 | 30 | 20 | 12-30+20=2 |
역사
- Élie Cartan
- 1934 콕세터
- 수학사 연표
메모
- 정다면체와의 숨바꼭질, 피타고라스의 창, 2009-2-11
- http://mathoverflow.net/questions/188980/what-are-the-outer-automorphisms-of-a-coxeter-group
- Lange, Christian, and Marina A. Mikhailova. “Classification of Finite Groups Generated by Reflections and Rotations.” arXiv:1509.06922 [math], September 23, 2015. http://arxiv.org/abs/1509.06922.
- Morin-Duchesne, Alexi, Jorgen Rasmussen, and Philippe Ruelle. “Dimer Representations of the Temperley-Lieb Algebra.” arXiv:1409.3416 [cond-Mat, Physics:hep-Th, Physics:math-Ph], September 11, 2014. http://arxiv.org/abs/1409.3416.
- 강의록 http://math.sfsu.edu/federico/Clase/Coxeter/lectures.html
- 비디오 강의 http://vod.mathnet.or.kr/sub4_1.php?key_s_title=Coxeter+Groups+and+Reflection+Symmetry+Ten+Lectures+by+Jon+McCammond&key_year=x
관련된 항목들
- 콕세터 원소(Coxeter element)
- 반사 변환
- 정다면체
- 5차방정식과 정이십면체
- 몰리엔 정리 (Molien's theorem)
- Limit roots of infinite Coxeter groups
- 쌍곡 콕세터 군
- 콕세터 군에서의 축약 표현
- 콕세터 군의 표현론
- 콕세터 군에서의 알고리즘
매스매티카 파일 및 계산 리소스
사전 형태의 자료
- http://en.wikipedia.org/wiki/Reflection_group
- http://en.wikipedia.org/wiki/Coxeter_group
- http://en.wikipedia.org/wiki/Chevalley–Shephard–Todd_theorem
- http://www.encyclopediaofmath.org/index.php/Coxeter_group
리뷰, 에세이, 강의노트
- Belolipetsky, Mikhail. “Arithmetic Hyperbolic Reflection Groups.” arXiv:1506.03111 [math], June 9, 2015. http://arxiv.org/abs/1506.03111.
- Geck, Meinolf. “PyCox: Computing with (finite) Coxeter Groups and Iwahori-Hecke Algebras.” LMS Journal of Computation and Mathematics 15 (November 2012): 231–56. doi:10.1112/S1461157012001064.
- Rouquier, Weyl groups, affine Weyl groups and reflection groups
- Arjeh M. Cohen, Coxeter groups
- Heckman, Gert. "Coxeter Groups." Lecture Notes, Fall (2013). http://www.math.ru.nl/~heckman/CoxeterGroups.pdf
- Daniel Allcock 'The finite reflection groups'
- Roe Goodman Alice through Looking Glass after Looking Glass: The Mathematics of Mirrors and Kaleidoscopes, The American Mathematical Monthly, Vol. 111, No. 4 (Apr., 2004), pp. 281-298
- Bourbaki, Nicolas. ‘Groups Generated by Reflections; Root Systems’. In Elements of the History of Mathematics, 269–74. Springer Berlin Heidelberg, 1994. http://link.springer.com.ezproxy.library.uq.edu.au/chapter/10.1007/978-3-642-61693-8_26.
- Logothetti, Dave, and H. S. M. Coxeter. ‘An Interview with H. S. M. Coxeter, the King of Geometry’. The Two-Year College Mathematics Journal 11, no. 1 (1 January 1980): 2–19. doi:10.2307/3026700.
관련논문
- Tomoshige Yukita, On the growth rates of cofinite 3-dimensional Coxeter groups whose dihedral angles are of the form \(\fracπ{m}\) for \(m=2,3,4,5,6\), http://arxiv.org/abs/1603.04592v1
- Kamgarpour, Masoud. “Stabilisers of Eigenvectors of Finite Reflection Groups.” arXiv:1512.01591 [math], December 4, 2015. http://arxiv.org/abs/1512.01591.
- Labbé, Jean-Philippe, and Sébastien Labbé. “A Perron Theorem for Matrices with Negative Entries and Applications to Coxeter Groups.” arXiv:1511.04975 [math], November 16, 2015. http://arxiv.org/abs/1511.04975.
- Deza, Michel, and Mark Pankov. “Zigzag Structure of Thin Chamber Complexes.” arXiv:1509.03754 [math], September 12, 2015. http://arxiv.org/abs/1509.03754.
- Bezrukavnikov, Roman, Michael Finkelberg, and Ivan Mirković. “Equivariant (\(K\)-)homology of Affine Grassmannian and Toda Lattice.” arXiv:math/0306413, June 29, 2003. http://arxiv.org/abs/math/0306413.
- Kato, Mitsuo, and Jiro Sekiguchi. “Regular Polyhedral Groups and Reflection Groups of Rank Four.” European Journal of Combinatorics, Arithmetique et Combinatoire, 25, no. 4 (May 2004): 565–77. doi:10.1016/j.ejc.2003.09.013.
- Steinberg, Robert. “Finite Reflection Groups.” Transactions of the American Mathematical Society 91 (1959): 493–504.
- Chevalley, Claude. “Invariants of Finite Groups Generated by Reflections.” American Journal of Mathematics 77 (1955): 778–82.
- H. S. M. Coxeter, The complete enumeration of finite groups of the form \(R^2_i = (R_iR_j)^{k_{ij}} = 1\), J. London Math. Soc. 10 (1935), 21–25
- Coxeter, H. S. M. ‘Discrete Groups Generated by Reflections’. Annals of Mathematics. Second Series 35, no. 3 (1934): 588–621. doi:10.2307/1968753.
메타데이터
위키데이터
- ID : Q7307244
Spacy 패턴 목록
- [{'LOWER': 'reflection'}, {'LEMMA': 'group'}]
- [{'LOWER': 'reflection'}, {'LEMMA': 'group'}]