폰 슈타우트-클라우센 정리

수학노트
둘러보기로 가기 검색하러 가기

개요[편집]

정리 (폰 슈타우트-클라우센)

정수 $k\in 2\mathbb{Z}_{>0}$에 대하여, 다음이 성립한다 $$B_{k} + \sum_{(p-1)|k} \frac{1}{p} \in \mathbb{Z}$$

따름정리

베르누이 수 <math>B_k=\frac{N_k}{D_k}</math> (여기서 <math>N_k, D_k</math>은 서로소)의 분모 <math>D_k</math>는 <math>p-1|k</math> 을 만족하는 모든 소수 <math>p</math>의 곱으로 주어진다.

따름정리

정수 $k\in 2\mathbb{Z}_{>0}$와 $p-1|k$를 만족하는 소수 $p$에 대하여, 다음이 성립한다 $$ pB_k\equiv -1 \pmod p $$


테이블[편집]

$$ \begin{array}{c|c|c|c}

n & B_n & \sum 1/p & B_n+\sum 1/p \\

\hline

2 & \frac{1}{6} & \frac{5}{6} & 1 \\
4 & -\frac{1}{30} & \frac{31}{30} & 1 \\
6 & \frac{1}{42} & \frac{41}{42} & 1 \\
8 & -\frac{1}{30} & \frac{31}{30} & 1 \\
10 & \frac{5}{66} & \frac{61}{66} & 1 \\
12 & -\frac{691}{2730} & \frac{3421}{2730} & 1 \\
14 & \frac{7}{6} & \frac{5}{6} & 2 \\
16 & -\frac{3617}{510} & \frac{557}{510} & -6 \\
18 & \frac{43867}{798} & \frac{821}{798} & 56 \\
20 & -\frac{174611}{330} & \frac{371}{330} & -528 \\
22 & \frac{854513}{138} & \frac{121}{138} & 6193 \\
24 & -\frac{236364091}{2730} & \frac{3421}{2730} & -86579 \\
26 & \frac{8553103}{6} & \frac{5}{6} & 1425518 \\
28 & -\frac{23749461029}{870} & \frac{929}{870} & -27298230 \\
30 & \frac{8615841276005}{14322} & \frac{15745}{14322} & 601580875 \\

\end{array} $$


관련된 항목들[편집]


매스매티카 파일 및 계산 리소스[편집]


사전 형태의 자료[편집]


수학용어번역[편집]