폰 슈타우트-클라우센 정리

수학노트
둘러보기로 가기 검색하러 가기

개요

정리 (폰 슈타우트-클라우센)

정수 \(k\in 2\mathbb{Z}_{>0}\)에 대하여, 다음이 성립한다 \[B_{k} + \sum_{(p-1)|k} \frac{1}{p} \in \mathbb{Z}\]

따름정리

베르누이 수 \(B_k=\frac{N_k}{D_k}\) (여기서 \(N_k, D_k\)은 서로소)의 분모 \(D_k\)는 \(p-1|k\) 을 만족하는 모든 소수 \(p\)의 곱으로 주어진다.

따름정리

정수 \(k\in 2\mathbb{Z}_{>0}\)와 \(p-1|k\)를 만족하는 소수 \(p\)에 대하여, 다음이 성립한다 \[ pB_k\equiv -1 \pmod p \]


테이블

\[ \begin{array}{c|c|c|c} n & B_n & \sum 1/p & B_n+\sum 1/p \\ \hline 2 & \frac{1}{6} & \frac{5}{6} & 1 \\ 4 & -\frac{1}{30} & \frac{31}{30} & 1 \\ 6 & \frac{1}{42} & \frac{41}{42} & 1 \\ 8 & -\frac{1}{30} & \frac{31}{30} & 1 \\ 10 & \frac{5}{66} & \frac{61}{66} & 1 \\ 12 & -\frac{691}{2730} & \frac{3421}{2730} & 1 \\ 14 & \frac{7}{6} & \frac{5}{6} & 2 \\ 16 & -\frac{3617}{510} & \frac{557}{510} & -6 \\ 18 & \frac{43867}{798} & \frac{821}{798} & 56 \\ 20 & -\frac{174611}{330} & \frac{371}{330} & -528 \\ 22 & \frac{854513}{138} & \frac{121}{138} & 6193 \\ 24 & -\frac{236364091}{2730} & \frac{3421}{2730} & -86579 \\ 26 & \frac{8553103}{6} & \frac{5}{6} & 1425518 \\ 28 & -\frac{23749461029}{870} & \frac{929}{870} & -27298230 \\ 30 & \frac{8615841276005}{14322} & \frac{15745}{14322} & 601580875 \\ \end{array} \]


관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료


수학용어번역

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'karl'}, {'LOWER': 'georg'}, {'LOWER': 'christian'}, {'LOWER': 'von'}, {'LEMMA': 'Staudt'}]
  • [{'LOWER': 'dr'}, {'LOWER': 'karl'}, {'LOWER': 'georg'}, {'LOWER': 'christian'}, {'LOWER': 'von'}, {'LEMMA': 'Staudt'}]