"푸리에 변환"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 23개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
* [[푸리에 변환]]
+
* 아벨군 <math>G</math>과 불변측도, 캐릭터 <math>\chi:G\to \mathbb{C}</math>그 위에 정의된 함수 <math>f:G \to \mathbb C</math>,  에 대하여 푸리에 변환을 다음과 같이 정의:<math>\hat f(\chi) := \int_{g \in G} f(g)\bar \chi(g) \,dg</math>
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5>
+
==유한아벨군의 경우==
  
* 아벨군 <math>G</math>과 불변측도, 캐릭터 <math>\chi:G\to \mathbb{C}</math>그 위에 정의된 함수 <math>f:G \to \mathbb C</math>,  에 대하여 푸리에 변환을 다음과 같이 정의<br><math>\hat f(\chi) := \int_{g \in G} f(g)\bar \chi(g) \,dg</math><br>
+
* <math>G=(\mathbb Z/N\mathbb Z)^{*}</math>와 준동형사상 <math>f \colon (\mathbb Z/N\mathbb Z)^{*} \to \mathbb C^{*}</math>의 경우
 +
:<math>\hat f(a) := \sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} f(t) e^{2 \pi i a t/N}=\sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} f(t) \zeta^{a t}</math>
 +
여기서 <math> \zeta = e^{2\pi i/N}</math>
 +
* [[가우스 합]]에의 응용
 +
* [[유한아벨군과 이산푸리에변환]] 항목에서 다루기로 함
  
 
 
  
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">유한아벨군의 경우</h5>
+
==푸리에변환==
  
* <math>G=(\mathbb Z/N\mathbb Z)^{*}</math>와 준동형사상 <math>f \colon (\mathbb Z/N\mathbb Z)^{*} \to \mathbb C^{*}</math>의 경우
+
* 리 아벨군으로서의 <math>G=(\mathbb{R}^n, +)</math> <math>f:G \to \mathbb C</math> 에 대하여 푸리에변환을 다음과 같이 정의
 +
:<math>\hat{f}(\mathbf{\xi}) := \int_{\mathbb{R}^n} f(\mathbf{x}) e^{- 2\pi i \mathbf{x}\cdot \mathbf{\xi}}\,d\mathbf{x}</math>
 +
  
<math>\hat f(a) := \sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} f(t) e^{2 \pi i a t/N}=\sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} f(t) \zeta^{a t}</math>
+
===1차원 푸리에 변환의 예===
 +
:<math>
 +
\begin{array}{c|c}
 +
f(x) & \hat{f}(\xi) \\
 +
\hline
 +
e^{\alpha  \left(-x^2\right)} & \frac{\sqrt{\pi } e^{-\frac{\pi ^2 \xi ^2}{\alpha }}}{\sqrt{\alpha }} \\
 +
e^{i \pi  \left(\tau  x^2+2 x z\right)} & \frac{e^{-\frac{i \pi  (z-\xi )^2}{\tau }}}{\sqrt{-i \tau }}
 +
\end{array}
 +
</math>
  
여기서 <math> \zeta = e^{2\pi i/N}</math>
 
  
* [[가우스 합|가우스합]]의 정의와의 비교<br>
+
===2차원 푸리에 변환의 예===
 +
:<math>
 +
\begin{array}{c|c}
 +
f(x) & \hat{f}(\xi) \\
 +
\hline
 +
e^{-\pi  t \left(x_1^2+x_2 x_1+x_2^2\right)} & \frac{2 e^{-\frac{4 \pi  \left(\xi _1^2-\xi _2 \xi _1+\xi _2^2\right)}{3 t}}}{\sqrt{3} t}
 +
\end{array}
 +
</math>
 +
  
* <math>a\in (\mathbb Z/N\mathbb Z)^{*}</math>와 곱셈에 대한 준동형사상 <math>\chi \colon (\mathbb Z/N\mathbb Z)^{*} \to \mathbb C^{*}</math>에 대하여 가우스합을 다음과 같이 정의함
+
  
<math>g_a(\chi) := \sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} \chi(t) e^{2 \pi i a t/N}=\sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} \chi(t) \zeta^{a t}</math>
+
==멜린 변환==
  
여기서 <math> \zeta = e^{2\pi i/N}</math>
+
* <math>G=(\mathbb{R^{+}}, *)</math>, <math>f:G \to \mathbb C</math> 에 대하여 멜린변환을 다음과 같이 정의:<math>\hat{f}(s) := \int_{0}^{\infty} f(x) x^{s}\frac{dx}{x}</math>
 +
* [[감마함수]]의 정의, [[리만제타함수]], [[디리클레 L-함수]]의 해석적확장에 활용
 +
* [[ζ(4)와 슈테판-볼츠만 법칙]]
 +
* [[멜린-반스 적분]]
  
*  성질<br><math>g_a(\chi) = \chi(a^{-1}) g_1(\chi)=\bar\chi(a)g_1(\chi)</math><br><math>\chi(n)=\frac{1}{N}\sum_{(a,N)=1}g_a(\chi)e^{-2\pi i n a/N}</math><br>
+
==재미있는 사실==
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">푸리에변환(실수의 경우)</h5>
+
==역사==
  
* 리 아벨군으로서의 <math>G=(\mathbb{R}, +)</math> 과 <math>f:G \to \mathbb C</math> 에 대하여 푸리에변환을 다음과 같이 정의<br><math>\hat{f}(\xi) := \int_{-\infty}^{\infty} f(x)\ e^{- 2\pi i x \xi}\,dx</math><br>
+
* [[수학사 연표]]
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">푸리에 변환의 예</h5>
+
==관련된 항목들==
  
<math>f(x)=e^{-\alpha x^2}</math>
+
* [[유한군의 표현론]]
 +
* [[순환군과 유한아벨군의 표현론|순환군의 표현론]]
 +
* [[포아송의 덧셈 공식]]
 +
* [[라플라스 변환]]
  
<math>\hat{f}(\xi)=\sqrt{\frac{\pi}{\alpha}}\cdot e^{-\frac{(\pi \xi)^2}{\alpha}}</math>
+
  
<math>f(x)=e^{\pi i (x^2\tau+2x z)</math>
+
  
<math>\hat{f}(\xi)=\sqrt{\frac{i}{\tau}}e^{-\pi i\frac{(\xi-z)^2}{\tau}</math>
+
==매스매티카 파일 및 계산 리소스==
  
 
+
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxMDcyMWVlNzQtNTMwYi00MDRjLWI2NjQtNWFlZjFmZGM1YjE0&sort=name&layout=list&num=50
  
 
 
  
<h5 style="margin: 0px; line-height: 2em;">멜린 변환</h5>
+
  
* <math>G=(\mathbb{R^{+}}, *)</math>, <math>f:G \to \mathbb C</math> 에 대하여 멜린변환을 다음과 같이 정의<br><math>\hat{f}(s) := \int_{0}^{\infty} f(x) x^{s}\frac{dx}{x}</math><br>
+
==사전형태의 자료==
* [[감마함수]]의 정의, [[리만제타함수]], [[디리클레 L-함수]]의 해석적확장에 활용<br>
 
* [[3792297|슈테판-볼츠만 법칙과 리만제타함수의 값]]<br>
 
  
 
+
* http://ko.wikipedia.org/wiki/푸리에변환
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
 
 
 
* [[수학사연표 (역사)|수학사연표]]<br>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 다른 주제들</h5>
 
 
 
* [[유한군의 표현론]]<br>
 
* [[순환군과 유한아벨군의 표현론|순환군의 표현론]]<br>
 
* [[포아송의 덧셈 공식]]<br>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
 
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
 
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">참고할만한 자료</h5>
 
 
 
* [http://ko.wikipedia.org/wiki/%ED%91%B8%EB%A6%AC%EC%97%90%EB%B3%80%ED%99%98 http://ko.wikipedia.org/wiki/푸리에변환]
 
 
* http://en.wikipedia.org/wiki/Fourier_transform
 
* http://en.wikipedia.org/wiki/Fourier_transform
* http://www.wolframalpha.com/input/?i=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
  
 
 
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
+
==관련기사==
  
* [http://www.segye.com/Articles/News/Society/Article.asp?aid=20070322001256&ctg1=09&ctg2=00&subctg1=09&subctg2=00&cid=0101080900000&dataid=200703221220000054 [생활속과학원리찾기]푸리에 변환은 어떻게 쓰일까]<br>
+
* [http://www.segye.com/Articles/News/Society/Article.asp?aid=20070322001256&ctg1=09&ctg2=00&subctg1=09&subctg2=00&cid=0101080900000&dataid=200703221220000054 [생활속과학원리찾기]푸리에 변환은 어떻게 쓰일까]
 
** 안종제 영신고등학교 물리 교사, 세계일보, 2007-3-25
 
** 안종제 영신고등학교 물리 교사, 세계일보, 2007-3-25
* [http://www.etnews.co.kr/news/detail.html?id=200609080041 [사이언스 21](119)푸리에 급수]<br>
+
* [http://www.etnews.co.kr/news/detail.html?id=200609080041 [사이언스 21](119)푸리에 급수]
 
** [http://www.etnews.co.kr/news/detail.html?id=200609080041 ]전자신문, 2006-9-11
 
** [http://www.etnews.co.kr/news/detail.html?id=200609080041 ]전자신문, 2006-9-11
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** [http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=%ED%91%B8%EB%A6%AC%EC%97%90%EB%B3%80%ED%99%98 http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=푸리에변환]
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
 
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
*  
 
  
 <br>
+
==메타데이터==
 +
===위키데이터===
 +
* ID : [https://www.wikidata.org/wiki/Q6520159 Q6520159]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'fourier'}, {'LEMMA': 'transform'}]
 +
* [{'LEMMA': 'FT'}]

2021년 2월 17일 (수) 06:07 기준 최신판

개요

  • 아벨군 \(G\)과 불변측도, 캐릭터 \(\chi:G\to \mathbb{C}\)그 위에 정의된 함수 \(f:G \to \mathbb C\), 에 대하여 푸리에 변환을 다음과 같이 정의\[\hat f(\chi) := \int_{g \in G} f(g)\bar \chi(g) \,dg\]



유한아벨군의 경우

  • \(G=(\mathbb Z/N\mathbb Z)^{*}\)와 준동형사상 \(f \colon (\mathbb Z/N\mathbb Z)^{*} \to \mathbb C^{*}\)의 경우

\[\hat f(a) := \sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} f(t) e^{2 \pi i a t/N}=\sum_{t \in (\mathbb Z/N\mathbb Z)^{*}} f(t) \zeta^{a t}\] 여기서 \( \zeta = e^{2\pi i/N}\)


푸리에변환

  • 리 아벨군으로서의 \(G=(\mathbb{R}^n, +)\) 과 \(f:G \to \mathbb C\) 에 대하여 푸리에변환을 다음과 같이 정의

\[\hat{f}(\mathbf{\xi}) := \int_{\mathbb{R}^n} f(\mathbf{x}) e^{- 2\pi i \mathbf{x}\cdot \mathbf{\xi}}\,d\mathbf{x}\]


1차원 푸리에 변환의 예

\[ \begin{array}{c|c} f(x) & \hat{f}(\xi) \\ \hline e^{\alpha \left(-x^2\right)} & \frac{\sqrt{\pi } e^{-\frac{\pi ^2 \xi ^2}{\alpha }}}{\sqrt{\alpha }} \\ e^{i \pi \left(\tau x^2+2 x z\right)} & \frac{e^{-\frac{i \pi (z-\xi )^2}{\tau }}}{\sqrt{-i \tau }} \end{array} \]


2차원 푸리에 변환의 예

\[ \begin{array}{c|c} f(x) & \hat{f}(\xi) \\ \hline e^{-\pi t \left(x_1^2+x_2 x_1+x_2^2\right)} & \frac{2 e^{-\frac{4 \pi \left(\xi _1^2-\xi _2 \xi _1+\xi _2^2\right)}{3 t}}}{\sqrt{3} t} \end{array} \]



멜린 변환

재미있는 사실

역사



관련된 항목들



매스매티카 파일 및 계산 리소스



사전형태의 자료



관련기사

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'fourier'}, {'LEMMA': 'transform'}]
  • [{'LEMMA': 'FT'}]