1차원 이징 모형(Ising model)

수학노트
이동: 둘러보기, 검색

개요

  • 이징 모형(Ising model)은 평형통계물리에서 다루는 시스템 중 가장 단순하면서도 중요
  • 1차원 이징 모형은 정확히 풀리는 모형으로 상전이 현상을 보이지 않는다
  • 외부자기장이 없는 2차원 이징 모형 (사각 격자)은 정확히 풀리는 모형으로 상전이 현상을 보인다


해밀토니안과 분배함수

크기가 N인 1차원 격자의 양 끝이 이어져 있다고 합시다. 이 격자 위의 이징 모형을 나타내는 해밀토니안은 다음과 같습니다. \[H=-J\sum_{i=1}^N s_is_{i+1}-h\sum_{i=1}^N s_i,\ s_{N+1}=s_1\]

인접합 스핀 사이에는 $J$라는 상호작용이 있고 각 스핀에는 외부 자기장 $h$가 균일하게 가해지는 것으로 놓았습니다. 분배함수는 다음과 같습니다 $$ \begin{aligned} Z&=\sum_{\{s\}}e^{-\beta H}\\ &=\sum_{\{s\}} e^{Bs_1}e^{Ks_1s_2} e^{Bs_2}e^{Ks_2s_3}\cdots e^{Bs_N}e^{Ks_Ns_1} \\ &=\sum_{\{s\}} e^{\frac{B}{2}s_1}e^{Ks_1s_2} e^{\frac{B}{2}s_2}e^{Ks_2s_3}\cdots e^{\frac{B}{2}s_N}e^{Ks_Ns_1}e^{\frac{B}{2}s_1} \end{aligned} \tag{1} $$ 여기서 $B=\beta h$, $K=\beta J$이고, 합은 모든 스핀 배열 $\{s\}=(s_1,\cdots,s_N)$에 대하여 행해지며, 각 스핀 $s_i,\,i=1,\cdots,N$는 1 또는 -1.

  • $N=2$이면,

$$ \begin{aligned} Z&=\sum_{\{s\}}e^{\left(B s_1+B s_2+2 K s_2 s_1\right)}\\ &=e^{2 K-2 B}+e^{2 B+2 K}+2 e^{-2 K} \end{aligned} $$

  • $N=3$

$$ \begin{aligned} Z&=\sum_{\{s\}}e^{\left(B s_1+B s_2+B s_3+K s_1 s_2+K s_2 s_3+K s_3 s_1\right)}\\ &=3 e^{-B-K}+3 e^{B-K}+e^{3 K-3 B}+e^{3 B+3 K} \end{aligned} $$

  • $N=4$

$$ \begin{aligned} Z&=\sum_{\{s\}}e^{\left(B s_1+B s_2+B s_3+B s_4+K s_2 s_1+K s_4 s_1+K s_2 s_3+K s_3 s_4\right)}\\ &=e^{4 K-4 B}+e^{4 B+4 K}+4 e^{-2 B}+4 e^{2 B}+2 e^{-4 K}+4 \end{aligned} $$

  • 아래에서는 분배함수 $Z$를 구하는 방법을 설명합니다.

전달행렬을 통한 분배함수의 표현

파울리 행렬을 이용하여 분배함수를 표현하려 합니다. 우선 파울리 행렬은 다음과 같습니다. \[\sigma_x=\begin{pmatrix} 0 & 1\\ 1 & 0\end{pmatrix},\ \sigma_y=\begin{pmatrix} 0 & -i\\ i & 0\end{pmatrix},\ \sigma_z=\begin{pmatrix} 1 & 0\\ 0 & -1\end{pmatrix}\]

이제 (1)의 각 요소를 하나씩 봅니다.

$V_1$

먼저 $B$가 있는 요소를 보면 각 스핀이 1 또는 -1이므로 아래처럼 두 경우밖에 없습니다. \[e^{Bs_i}=\left\{\begin{array}{ll}e^{B}=\langle+|e^{B\sigma_z}|+\rangle & \textrm{if}\ s_i=1 \\ e^{-B}=\langle-|e^{B\sigma_z}|-\rangle & \textrm{if}\ s_i=-1 \end{array}\right.\]

그 각각을 위의 오른쪽처럼 파울리 행렬 중 z성분으로 나타냅니다. 이때 +와 -는 각각 스핀이 1인 상태, 스핀이 -1인 상태를 나타냅니다. 헷갈릴 수 있는데요, 맨 왼쪽의 $s_i$는 '값'이고 맨 오른쪽의 $\sigma_z$는 '행렬'입니다. 그래서 이 행렬에 + 또는 -로 표현된 상태가 앞뒤로 곱해져야 '값'이 되겠죠. 편의상 $\sigma_z$를 지수로 갖는 부분을 $V_1$로 정의합니다. \[V_1\equiv e^{B\sigma_z}=\begin{pmatrix} e^{B} & 0 \\ 0 & e^{-B} \end{pmatrix},\ \langle+|V_1|-\rangle=\langle-|V_1|+\rangle=0\]

$V_2$

이제 $K$가 있는 요소를 봅니다. 이 요소의 값은 이웃한 두 스핀 값이 같으냐 다르냐에만 의존합니다. \[e^{Ks_is_{i+1}}=\left\{\begin{array}{ll} e^{K}=\langle+|V_2|+\rangle=\langle-|V_2|-\rangle & \textrm{if}\ s_i=s_{i+1} \\ e^{-K}=\langle+|V_2|-\rangle=\langle-|V_2|+\rangle & \textrm{if}\ s_i\neq s_{i+1} \end{array}\right.\] \[V_2=\begin{pmatrix}e^K & e^{-K} \\ e^{-K} & e^K \end{pmatrix} = e^K I_2+e^{-K}\sigma_x \tag{2}\]

맨 오른쪽의 첫번째 항의 $I_2$은 단위행렬을 뜻합니다. $V_2$는 다음과 같은 형태로 쓸 수 있습니다. \[V_2=A(K)e^{K^*\sigma_x}\] 여기서 $A(K)$와 $K^*$는 $K$의 함수입니다. $V_2$도 $V_1$처럼 이런 형태로 표현해야 나중에 풀기가 쉬워집니다. 이제 $A(K)$와 $K^{*}$를 구하려고 합니다. $$ \begin{aligned} A(K)e^{K^*\sigma_x}&=A(K)\sum_{j=0}^\infty \frac{(K^{*})^{j}}{j!}(\sigma_x)^j \\ &=A(K)\left(\sum_{k=0}^\infty\frac{(K^{*})^{2k}}{(2k)!}I_2+\sum_{k=0}^\infty\frac{(K^{*})^{2k+1}}{(2k+1)!}\sigma_x\right)\\ &=A(K)(\cosh K^{*}I_2+\sinh K^{*}\sigma_x) \end{aligned} $$ 여기서 지수함수를 그냥 푼 다음에 짝수번째 항들과 홀수번째 항들로 나누고, $\sigma_x$의 제곱은 단위행렬, 즉 $I_2$이 된다는 사실을 이용하였습니다. 이를 (2)와 비교하면 $$ \begin{aligned} e^K&=A(K)\cosh K^{*}\\ e^{-K}&=A(K)\sinh K^{*} \end{aligned} $$ 이로부터 아래 결과를 얻습니다. \[A(K)=\sqrt{2\sinh 2K},\ \tanh K^*=e^{-2K}\] 쌍곡함수 참조

전달행렬

  • 지금까지 얻은 결과를 이용해서 (1)를 다음과 같이 쓸 수 있습니다

\[Z= \operatorname{Tr} (V_1^{1/2}V_2V_1^{1/2})^N=\operatorname{Tr} T^N\] 여기서 $T:=V_1^{1/2}V_2V_1^{1/2}$

$$ T=\left( \begin{array} e^{B+K} & e^{-K} \\ e^{-K} & e^{K-B} \end{array} \right)=\left( \begin{array}{cc} e^{J\beta+h \beta} & e^{-J \beta } \\ e^{-J \beta } & e^{J \beta -h \beta } \\ \end{array} \right)\tag{3} $$


전달행렬의 대각화

  • 전달행렬 (3)의 고유값 $\lambda_1, \lambda_2$은

$$ \begin{aligned} \lambda_1 &= e^{\beta J} \cosh (\beta h)+\sqrt{e^{2 \beta J} \sinh ^2(\beta h)+e^{-2 \beta J}}\\ \lambda_2 &= e^{\beta J} \cosh (\beta h)-\sqrt{e^{2 \beta J} \sinh ^2(\beta h)+e^{-2 \beta J}} \end{aligned} $$ 로 주어지며 이로부터 분배함수를 바로 얻습니다 \[Z=\lambda_1^N+\lambda_2^N\]

고전 모형과 양자 모형

상호작용하는 N개의 스핀에 관한 문제가 1개의 스핀에 대한 문제로 환원되었음을 보았습니다. 원래 시스템의 스핀은 그 값이 1 또는 -1로 정해져 있다는 의미에서 '고전적 스핀'이고, 환원된 후의 스핀은 파울리 행렬로 표현되는 '양자 스핀'입니다. 1차원 고전 모형이 0차원 양자 모형과 같음을 보인 것이죠. (0차원은 곧 단 1개의 스핀에 대한 문제라는 뜻입니다.) 그래서 일반적으로 d+1차원 고전 모형이 d차원 양자 모형에 대응된다고 말합니다.

역사

  • 1925 이징에 의해 1차원 이징 모형이 해결
  • 1944 온사거에 의해 2차원 이징 모형 해결
  • 3차원은 아직 풀리지 않았고
  • 4차원 이상은 평균장 어림으로 풀린다는 게 알려져 있죠. 이외에도 척도 없는 연결망에서 평균장 어림을 이용하여 풀렸습니다.


관련된 항목들


계산 리소스


관련도서

  • 플리쉬케(Plischke)와 버거슨(Bergersen), <Equilibrium Statistical Physics> 3판의 6장