"3차원 공간의 회전과 SO(3)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 3차원 공간의 회전로 바꾸었습니다.) |
|
(차이 없음)
|
2011년 12월 3일 (토) 06:13 판
이 항목의 수학노트 원문주소
개요
로드리게스 공식
- 3차원에서 단위벡터 \((\omega _x,\omega _y,\omega _z)\) 를 축으로 하여 \(\theta\) 만큼 회전시키는 변환의 행렬표현
\(\left( \begin{array}{ccc} \cos (\theta )-(\cos (\theta )-1) \omega _x^2 & (1-\cos (\theta )) \omega _x \omega _y-\sin (\theta ) \omega _z & \sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z \\ (1-\cos (\theta )) \omega _x \omega _y+\sin (\theta ) \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _y^2 & -\sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z \\ -\sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z & \sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _z^2 \end{array} \right)\) - 로드리게스 공식 http://www.cs.berkeley.edu/~ug/slide/pipeline/assignments/as5/rotation.html
projective representation
- 단위구면의 회전에서 stereographic projection 을 통해 다음과 같은 뫼비우스 변환 을 얻는다
\( \begin{pmatrix} \alpha&-\overline{\beta}\\ \beta&\overline{\alpha} \end{pmatrix}\)
여기서 \(\alpha,\beta\in\mathbf{C}, |\alpha|^2 + |\beta|^2 = 1\)
무한소 회전
- 리대수의 생성원
\(L_{x}=\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right)\)
\(L_{y}=\left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array} \right)\)
\(L_{z}=\left( \begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)\)
역사
메모
- SO(3) 의 표현론
- SO(3,1) 로렌츠 군의 표현론
- 파울리 행렬, 디랙 행렬
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://ko.wikipedia.org/wiki/오일러_각도
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문