"3차원 공간의 회전과 SO(3)"의 두 판 사이의 차이
(피타고라스님이 이 페이지의 위치를 <a href="/pages/10821664">01 수리물리학의 주제들</a>페이지로 이동하였습니다.) |
|||
(같은 사용자의 중간 판 6개는 보이지 않습니다) | |||
52번째 줄: | 52번째 줄: | ||
* 리대수의 생성원<br><math>L_{x}=\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right)</math><br><math>L_{y}=\left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array} \right)</math><br><math>L_{z}=\left( \begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)</math><br> | * 리대수의 생성원<br><math>L_{x}=\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right)</math><br><math>L_{y}=\left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array} \right)</math><br><math>L_{z}=\left( \begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)</math><br> | ||
+ | * <math>[L_{i},L_{j}]=\epsilon_{ijk}L_{k}</math><br> <br> | ||
* [[벡터의 외적(cross product)]]<br> | * [[벡터의 외적(cross product)]]<br> | ||
− | + | <h5>양자역학의 각운동량 이론과의 관계</h5> | |
+ | |||
+ | (1) 궤도각운동량(Orbital Angular Momentum) | ||
+ | |||
+ | 수소원자를 이루는 전자의 각운동량은 3차원 직각좌표계를 도입할 때 <math>\vec{L} = \hat{x} L_x + \hat{y} L_y + \hat{z} L_z</math> 와 같이 성분으로 표기할 수 있다. 불확정성의 원리에 기반하여 실험적으로는 아무리 측정을 잘 해도 이 세 성분을 정확히 측정하는 것은 불가능하다. 양자역학에서는 다음 정준교환자관계식(canonical commutation relation)이 성립한다. 이는 불확정성의 원리와 관계가 있다. | ||
+ | |||
+ | <math>[x , p_x ] = i \hbar</math> , <math>[y , p_y ] = i \hbar</math>, <math>[z , p_z ] = i \hbar</math> | ||
+ | |||
+ | 이 관계식들은 각운동량의 각 성분들에 대한 아래의 교환자 관계식들과 동치이다. | ||
+ | |||
+ | <math>[L_x , L_y ] = i \hbar L_z</math>, <math>[L_y , L_z ] = i \hbar L_x</math>, <math>[L_z , L_x ] = i \hbar L_y</math> | ||
+ | |||
+ | (<math>\vec{L} = \vec{r} \times \vec{p}</math> 관계를 이용하면 쉽게 알 수 있다) | ||
+ | |||
+ | <math>x = 1, y = 2 , z = 3</math> 으로 두고 <math>i,j,k= 1,2,3</math> 이라 하면 리대수의 구조상수에 관한 교환관계식을 얻는다. | ||
+ | |||
+ | <math>[L_i , L_j ] = i \hbar \epsilon_{ijk} L_k</math> | ||
+ | |||
+ | (2) 스핀각운동량(Spin Angular Momentum) | ||
+ | |||
+ | 스핀각운동량에 관하여도 유사한 논리가 성립한다. | ||
2012년 3월 5일 (월) 10:49 판
이 항목의 수학노트 원문주소
개요
로드리게스 공식
- 3차원에서 단위벡터 \((\omega _x,\omega _y,\omega _z)\) 를 축으로 하여 \(\theta\) 만큼 회전시키는 변환의 행렬표현
\(\left( \begin{array}{ccc} \cos (\theta )-(\cos (\theta )-1) \omega _x^2 & (1-\cos (\theta )) \omega _x \omega _y-\sin (\theta ) \omega _z & \sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z \\ (1-\cos (\theta )) \omega _x \omega _y+\sin (\theta ) \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _y^2 & -\sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z \\ -\sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z & \sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _z^2 \end{array} \right)\) - 유도 http://www.cs.berkeley.edu/~ug/slide/pipeline/assignments/as5/rotation.html
- x,y,z 축을 중심으로 한 회전변환
- x 축
\(\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos (\theta ) & -\sin (\theta ) \\ 0 & \sin (\theta ) & \cos (\theta ) \end{array} \right)\) - y 축
\(\left( \begin{array}{ccc} \cos (\theta ) & 0 & \sin (\theta ) \\ 0 & 1 & 0 \\ -\sin (\theta ) & 0 & \cos (\theta ) \end{array} \right)\) - z 축
\(\left( \begin{array}{ccc} \cos (\theta ) & -\sin (\theta ) & 0 \\ \sin (\theta ) & \cos (\theta ) & 0 \\ 0 & 0 & 1 \end{array} \right)\)
- x 축
구면과 SO(3)
- \(S^2=SO(3)/SO(2)\) homogeneous space
- \(L^2(S^2)\)에 작용하는 SO(3)의 표현을 통하여 구면조화함수(spherical harmonics) 이론을 전개할 수 있다
- http://books.google.com/books?id=bNytaQ8eon4C&pg=PA76&dq=sphere+so%283%29+homogeneous+space&hl=ko&ei=e7XZTr78K-KXiAKrwoGUCg&sa=X&oi=book_result&ct=result&resnum=3&ved=0CDgQ6AEwAg#v=onepage&q=sphere%20so%283%29%20homogeneous%20space&f=false
사영표현(projective representation)
- 단위구면의 회전으로부터 stereographic projection 을 통해 다음과 같은 뫼비우스 변환 을 얻을 수 있다
\(f(z)=\frac{\alpha z+\beta}{-\overline{\beta}z+\overline{\alpha}}\)
여기서 \(\alpha,\beta\in\mathbf{C}, |\alpha|^2 + |\beta|^2 = 1\) - 더 구체적으로 단위벡터 \((a,b,c)\) 를 축으로 하여 \(\theta\) 만큼 회전시키는 변환은 다음 뫼비우스 변환에 대응된다
\(f(z)=\frac{z \left(\cos \left(\frac{\theta }{2}\right)+i c \sin \left(\frac{\theta }{2}\right)\right)+i a \sin \left(\frac{\theta }{2}\right)-b \sin \left(\frac{\theta }{2}\right)}{z \left(b \sin \left(\frac{\theta }{2}\right)+i a \sin \left(\frac{\theta }{2}\right)\right)-i c \sin \left(\frac{\theta }{2}\right)+\cos \left(\frac{\theta }{2}\right)}\) - 벡터공간이 아닌 1차원 복소사영평면에 정의되므로, 사영표현(projective representation) 이다
- 벡터공간에 정의되는 표현을 얻으려면, Spin(3)와 파울리 행렬 의 도입이 필요하다
무한소 회전
- 리대수의 생성원
\(L_{x}=\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right)\)
\(L_{y}=\left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array} \right)\)
\(L_{z}=\left( \begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)\) - \([L_{i},L_{j}]=\epsilon_{ijk}L_{k}\)
- 벡터의 외적(cross product)
양자역학의 각운동량 이론과의 관계
(1) 궤도각운동량(Orbital Angular Momentum)
수소원자를 이루는 전자의 각운동량은 3차원 직각좌표계를 도입할 때 \(\vec{L} = \hat{x} L_x + \hat{y} L_y + \hat{z} L_z\) 와 같이 성분으로 표기할 수 있다. 불확정성의 원리에 기반하여 실험적으로는 아무리 측정을 잘 해도 이 세 성분을 정확히 측정하는 것은 불가능하다. 양자역학에서는 다음 정준교환자관계식(canonical commutation relation)이 성립한다. 이는 불확정성의 원리와 관계가 있다.
\([x , p_x ] = i \hbar\) , \([y , p_y ] = i \hbar\), \([z , p_z ] = i \hbar\)
이 관계식들은 각운동량의 각 성분들에 대한 아래의 교환자 관계식들과 동치이다.
\([L_x , L_y ] = i \hbar L_z\), \([L_y , L_z ] = i \hbar L_x\), \([L_z , L_x ] = i \hbar L_y\)
(\(\vec{L} = \vec{r} \times \vec{p}\) 관계를 이용하면 쉽게 알 수 있다)
\(x = 1, y = 2 , z = 3\) 으로 두고 \(i,j,k= 1,2,3\) 이라 하면 리대수의 구조상수에 관한 교환관계식을 얻는다.
\([L_i , L_j ] = i \hbar \epsilon_{ijk} L_k\)
(2) 스핀각운동량(Spin Angular Momentum)
스핀각운동량에 관하여도 유사한 논리가 성립한다.
역사
메모
- SO(3) 의 표현론
- SO(3,1) 로렌츠 군의 표현론
- 파울리 행렬, 디랙 행렬
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxMGIxYzExNmUtODM5Yy00NTMyLTgwYzctNWI2NjJlNzZhMWM5&sort=name&layout=list&num=50
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://ko.wikipedia.org/wiki/오일러_각도
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문
관련도서
- Harmonic analysis on commutative spaces
- Groups and Symmetries http://www.springer.com/mathematics/algebra/book/978-0-387-78865-4
- 도서내검색