"관성모멘트"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 20개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
==개요==
 
 
 
 
 
 
 
 
 
 
<h5>개요</h5>
 
  
 
* 정의
 
* 정의
*  r is the radius vector of a point within the body, ρ(r) is the mass density at point r, and d(r) is the distance from point r to the axis of rotation<br><math>I = \int_V \rho(\mathbf{r})\,d(\mathbf{r})^2 \, \mathrm{d}V\!(\mathbf{r}) </math><br>
+
*   r is the radius vector of a point within the body, ρ(r) is the mass density at point r, and d(r) is the distance from point r to the axis of rotation:<math>I = \int_V \rho(\mathbf{r})\,d(\mathbf{r})^2 \, \mathrm{d}V\!(\mathbf{r}) </math>
  
 
+
  
 
+
  
<h5>반지름이 R, 질량이 M인 공(ball)의 관성모멘트</h5>
+
==반지름이 R, 질량이 M인 공(ball)의 관성모멘트==
  
*  밀도를 <math>\mu</math> 라 두면, 다음과 같은 [[구면좌표계]] 를 이용한 삼중적분으로 쓰여진다<br><math>I=\int _0^{\pi }\int _0^{2 \pi }\int _0^R\mu \rho ^2 r^2 \sin (\phi )d\rho d\theta d\phi=\frac{8}{15} \pi \mu R^5</math><br> 따라서 <math>I=\frac{2 M R^2}{5}</math><br>
+
*  밀도를 <math>\mu</math> 라 두면, 다음과 같은 [[구면좌표계]] 를 이용한 삼중적분으로 쓰여진다:<math>I=\int _0^{\pi }\int _0^{2 \pi }\int _0^R\mu \rho ^2 r^2 \sin (\phi )d\rho d\theta d\phi=\frac{8}{15} \pi \mu R^5</math> 따라서 <math>I=\frac{2 M R^2}{5}</math>
*  
+
* [[각운동량의 양자 이론]]
  
 
+
  
 
+
  
<h5>역사</h5>
+
==메모==
  
 
+
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
 
 
 
 
 
 
 
 
 
 
<h5>메모</h5>
 
 
 
 
 
  
 
* Math Overflow http://mathoverflow.net/search?q=
 
* Math Overflow http://mathoverflow.net/search?q=
  
 
+
  
 
+
  
<h5>관련된 항목들</h5>
+
==관련된 항목들==
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
==수학용어번역==
  
*  단어사전<br>
+
*  단어사전
 
** http://translate.google.com/#en|ko|
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
** http://ko.wiktionary.org/wiki/
* 발음사전 http://www.forvo.com/search/
+
* 발음사전 http://www.forvo.com/search/
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
+
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
  
 
+
  
 
+
  
<h5>매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxbV9ERVJTVUlaNFk/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxbV9ERVJTVUlaNFk/edit
77번째 줄: 60번째 줄:
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
  
 
+
  
 
+
  
<h5>사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
89번째 줄: 72번째 줄:
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
  
 
+
 
 
 
 
  
<h5>리뷰논문, 에세이, 강의노트</h5>
+
  
 
+
==리뷰논문, 에세이, 강의노트==
  
 
+
  
 
+
  
<h5>관련논문</h5>
+
  
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
  
 
 
  
 
+
  
<h5>관련도서</h5>
+
 +
[[분류:수리물리학]]
  
도서내검색<br>
+
==메타데이터==
** http://books.google.com/books?q=
+
===위키데이터===
** http://book.daum.net/search/contentSearch.do?query=
+
* ID : [https://www.wikidata.org/wiki/Q165618 Q165618]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'moment'}, {'LOWER': 'of'}, {'LEMMA': 'inertia'}]
 +
* [{'LOWER': 'mass'}, {'LOWER': 'moment'}, {'LOWER': 'of'}, {'LEMMA': 'inertia'}]

2021년 2월 17일 (수) 04:59 기준 최신판

개요

  • 정의
  • r is the radius vector of a point within the body, ρ(r) is the mass density at point r, and d(r) is the distance from point r to the axis of rotation\[I = \int_V \rho(\mathbf{r})\,d(\mathbf{r})^2 \, \mathrm{d}V\!(\mathbf{r}) \]



반지름이 R, 질량이 M인 공(ball)의 관성모멘트

  • 밀도를 \(\mu\) 라 두면, 다음과 같은 구면좌표계 를 이용한 삼중적분으로 쓰여진다\[I=\int _0^{\pi }\int _0^{2 \pi }\int _0^R\mu \rho ^2 r^2 \sin (\phi )d\rho d\theta d\phi=\frac{8}{15} \pi \mu R^5\] 따라서 \(I=\frac{2 M R^2}{5}\)
  • 각운동량의 양자 이론



메모



관련된 항목들

수학용어번역



매스매티카 파일 및 계산 리소스



사전 형태의 자료



리뷰논문, 에세이, 강의노트

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'moment'}, {'LOWER': 'of'}, {'LEMMA': 'inertia'}]
  • [{'LOWER': 'mass'}, {'LOWER': 'moment'}, {'LOWER': 'of'}, {'LEMMA': 'inertia'}]