각운동량의 양자 이론

수학노트
이동: 둘러보기, 검색

개요

  • 고전역학의 각운동량
  • 오비탈 각운동량
  • 스핀 각운동량



고전역학의 각운동량

  • 고전적 의미에서 선운동량(linear momentum)이 물체가 직선운동하는데 대한 운동의 크기를 나타낸다. 이와 유사하게 각운동량(angular momentum)이란 물체가 회전운동하는데 대한 운동의 크기를 나타낸다.
  • 회전운동의 크기는 회전반지름, 물체의 질량, 회전속도에 비례해야 할 것이다. 여기에 방향을 고려하면 각운동량 벡터 $\mathbf{\Omega}$는 아래와 같이 정의된다. 방향을 정의할 때는 관습에 따라 오른손 규약을 따른다

\[\mathbf{\Omega}=\mathbf{x}\times \mathbf{p}\]

  • $\mathbf{x}=(x_1,x_2,x_3)$, $\mathbf{p}=(p_1,p_2,p_3)$로 두면, 각운동량 벡터의 각 성분은 $\Omega_j =\epsilon_{jkl} x_k p_l$ 로 주어진다
  • 포아송 괄호를 다음과 같이 정의하자

$$ \{f,g\} : = \sum_{i=1}^{3} \left[ \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial x_{i}} \right] $$

  • 각운동량 벡터의 각 성분은 다음을 만족한다

$$ \{\Omega_{i},\Omega_{j}\}=\epsilon_{ijk}\Omega_{k} $$ 풀어 쓰면, \[ \{\Omega_1 , \Omega_2 \} = \Omega_3 \\ \{\Omega_2 , \Omega_3 \} = \Omega_1 \\ \{\Omega_3 , \Omega_1 \} = \Omega_2 \]



양자화된 궤도각운동량(Orbital Angular Momentum)

  • 위치 연산자와 운동량 연산자의 양자화

\[[\hat x,\hat p] = \hat x \hat p - \hat p \hat x = i \hbar\]\[\hat p = - i \hbar {\partial \over \partial x}\]

  • 3차원에서는 다음 정준교환자관계식(canonical commutation relation)이 성립한다. 이는 불확정성의 원리와 관계가 있다.

\[ [\hat{x}_k , \hat{p}_l ] = i \hbar \delta_{kl} I \tag{1} \]

  • 수소원자를 이루는 전자의 각운동량은 3차원 직각좌표계를 도입할 때 \(\mathbf{L} = (L_1 ,L_2 ,L_3)\) 와 같이 세 개의 성분으로 표시 가능. 여기서 세 성분은 다음과 같이 주어지게 된다

$$L_j =\epsilon_{jkl} \hat{x}_k \hat{p}_l$$

  • 불확정성의 원리에 기반하여 실험적으로는 아무리 측정을 잘 해도 이 세 성분을 정확히 측정하는 것은 불가능함.
  • 관계식 (1)로부터 각운동량의 각 성분들에 대한 아래의 교환자 관계식을 얻는다.

\[[L_i , L_j ] = i \hbar \epsilon_{ijk} L_k\] 풀어 쓰면, \[ [L_1 , L_2 ] = i \hbar L_3 \\ [L_2 , L_3 ] = i \hbar L_1 \\ [L_3 , L_1 ] = i \hbar L_2 \]



스핀각운동량(Spin Angular Momentum)

  • 스핀각운동량에 관하여도 유사한 논리가 성립한다.\[[S_i , S_j] = i\hbar \epsilon_{ijk} S_k\]



3-j 기호



역사



메모



관련된 항목들


매스매티카 파일 및 계산 리소스



사전 형태의 자료



리뷰논문, 에세이, 강의노트


관련논문

  • Bitencourt, Ana Carla P., Mirco Ragni, Robert G. Littlejohn, Roger Anderson, and Vincenzo Aquilanti. “The Screen Representation of Vector Coupling Coefficients or Wigner 3j Symbols: Exact Computation and Illustration of the Asymptotic Behavior.” arXiv:1409.8205 [gr-Qc, Physics:math-Ph, Physics:quant-Ph] 8579 (2014): 468–81. doi:10.1007/978-3-319-09144-0_32.


관련도서